PIETRO PISCOIOTTA

TECNICHE DOSIMETRICHE PER FASCI DI PROTONI ACCELERATI TRAMITE INTERAZIONE LASER-TARGET

TESI DI LAUREA

RELATORE:
CHIAR.MO PROF. L. CALABRETTA
CORRELATORI:
DOTT. G.A.P. CIRRONE
DOTT. F. ROMANO

ANNO ACCADEMICO 2012-2013
INDICE

INDICE .. 1

INTRODUZIONE .. 4

1. CAPITOLO 1 – TECNICHE DI ACCELERAZIONE DI PARTICELLE CARICHE .. 7

1.1 METODI DI ACCELERAZIONE TRADIZIONALI .. 8

1.1.1 Ciclotrone .. 8

1.1.2 Sincrotrone .. 10

1.2 ADROTERAPIA .. 10

1.3 SVILUPPI FUTURI: ACCELERATORI LASER DRIVEN .. 12

1.3.1 Interazione laser-target ... 12

1.3.1.1 Produzione del plasma ... 14

1.3.1.2 Eccitazione del plasma ed espansione .. 16

1.3.2 Accelerazione di ioni attraverso l’interazione laser - target ... 18

1.3.2.1 TNSA (Target Normal Sheat Acceleration) .. 19

1.3.3 Possibili alternative future – Accelerazione laser-target ed ELI-Beamlines 23

CAPITOLO 2 – INTERAZIONE RADIAZIONE - MATERIA ED ELEMENTI DI DOSIMETRIA 25

2.1 INTERAZIONE RADIAZIONE – MATERIA ... 26

2.1.1 Tipi di radiazione .. 26

2.1.2 Radiazioni direttamente ionizzanti .. 27

2.1.3 Interazione di particella cariche pesanti con la materia .. 27

2.1.3.1 Stopping power ... 28

2.1.3.2 Range delle particelle cariche pesanti .. 30

2.1.4 Interazione con la materia di particelle cariche leggere .. 32

2.1.5 Radiazioni indirettamente ionizzanti ... 33

2.2 ELEMENTI DI RADIOBIOLOGIA .. 35

2.2.1 L.E.T. e R.B.E. .. 37

2.3 DOSIMETRIA .. 39

2.3.1 Grandezze di campo .. 39

2.3.2 Grandezze dosimetriche ... 40

2.3.2.1 Esposizione .. 40

2.3.2.2 Dose Assorbita e rateo di dose .. 41

2.3.2.3 K.E.R.M.A. .. 41
2.3.3	Misura della dose assorbita	42
2.3.3.1	Il Principio di Bragg - Gray	42
2.3.3.2	Camere a ionizzazione	45
2.3.3.3	Camere a ionizzazione cilindriche	46
2.3.3.4	Camere a ionizzazione a facce piane parallele	47
2.3.3.5	Camera MARKUS ADVANCED	48
2.3.3.6	Dosimetria assoluta dei fasci di protoni	49
2.3.3.7	Determinazione della dose assorbita in un fascio di protoni	49

CAPITOLO 3 – I FILM RADIOCROMICI | 52 |
3.1	INTRODUZIONE	53
3.2	GAFCHROMIC® FILM	54
3.2.1	Descrizione modelli utilizzati:	56
3.2.1.1	HD-810	56
3.2.1.2	EBT 3	58
3.2.2	Processo di polimerizzazione	59
3.2.3	Dipendenza della risposta dal rateo di dose	60
3.2.4	Dipendenza della risposta dalla temperatura	61
3.2.5	Dipendenza della risposta dall’energia	61
3.2.6	Fattore di correzione RCF $g_{0Q,0}$	62
3.2.7	Sistema di acquisizione del RCF	64

CAPITOLO 4 – DOSIMETRIA CON FILM RADIOCROMICI | 70 |
4.1	APPARATO SPERIMENTALE:	71
4.1.1	Il Ciclotrone Superconduttore.	71
4.1.2	La sala CATANA	71
4.2	OPERAZIONI PRELIMINARI DI DOSIMETRIA RELATIVA:	75
4.2.1	Diagnostica del fascio con Gafchromic e diodo a semiconduttore	75
4.2.2	Acquisizione del picco di Bragg non modulato con la camera Advanced Markus	78
4.2.3	Acquisizione del picco di Bragg modulato con la camera Markus Advanced	81
4.3	DOSIMETRIA ASSOLUTA	81
4.3.1	Calibrazione della camera MARKUS ADVANCED	81
4.4	DOSIMETRIA RELATIVA CON I GAFCHROMIC CON UN FASCIO DI PROTONI DA 62 MeV	83
4.4.1	Calibrazione	83
4.4.1.1	Risultati taratura HD-810 – Turno sperimentale ottobre	85
4.4.1.2	Risultati taratura EBT 3 – Turno sperimentale di ottobre e dicembre	85
4.4.2	Misure della curva di depth-dose con picco non modulato	88
4.4.2.1	Fattore di conversione spessore RCF in spessore equivalente in acqua	88
CAPITOLO 5 – SPETTROSCOPIA DI UN FASCIO DI PROTONI POLI-CROMATICO.......................... 101

5.1 SET-UP SPERIMENTALE .. 104

5.1.1 Modulatore ... 104

5.1.2 Cuneo ... 105

5.1.1.1 Progettazione del cuneo ... 106

5.2 SIMULAZIONI CON TRIM E SRIM ... 107

5.3 ANALISI DATI .. 108

5.3.1 Algoritmo per la deconvoluzione ... 108

5.3.2 Programma di elaborazione RCF scritto in ambiente MATLAB .. 110

5.4 RISULTATI .. 111

5.4.1 HD-810 - Modulatore .. 111

5.4.2 EBT3 – Modulatore .. 115

5.4.3 Cuneo ... 118

CONCLUSIONI ... 122

BIBLIOGRAFIA ... 125

ELENCO DELLE FIGURE .. 130

ELENCO DELLE TABELLE .. 134
INTRODUZIONE.

L’adopterapia e la radioterapia convenzionale sono terapie mediche utilizzate nel trattamento di forme tumorali. Queste tecniche sfruttano, a scopo terapeutico, l’azione biologica delle radiazioni ionizzanti che, investendo le cellule tumorali, ne provocano la morte o le danneggiano al punto tale da non consentirne più la riproduzione.

Nei trattamenti di adroterapia vengono utilizzati, a differenza dei trattamenti radioterapici, adroni, cioè particelle nucleari composte da quark. Gli adroni più utilizzati a scopo terapeutico sono i protoni e gli ioni carbonio. L’idea di usare adroni carichi per terapia venne nel 1946 a R. Wilson e i primi trattamenti furono eseguiti nel 1954 a Berkeley con protoni e nel 1957 con gli ioni di elio. L’adopterapia è ad oggi uno dei metodi di maggior successo per trattare i tumori poiché permette di migliorare la conformazione della dose al volume bersaglio e di avere un effetto biologico più alto rispetto alla radioterapia convenzionale [1]. Infatti, i trattamenti in cui si utilizzano ioni permettono di avere un maggiore controllo sulla deposizione della dose grazie al loro caratteristico picco di Bragg, permettendo, quindi, un sensibile miglioramento per quello che concerne la balistica del trattamento e l’efficacia a parità di dose rilasciata nel paziente. Infatti con tale tecnica è possibile rilasciare la maggior parte della dose al bersaglio tumorale e solamente una piccola dose nei tessuti sani circostanti, permettendo quindi, di trattare anche quei tumori che si trovano in prossimità di organi a rischio. Pertanto risulta meno invasiva della radioterapia tradizionale e risulta indicata per un numero sempre maggiore di tumori.

Ad oggi ci sono nel mondo 28 centri di protonterapia e circa 80000 pazienti sono stati trattati finora.

Gli alti costi limitano la diffusione a livello mondiale dei centri di adroterapia, per cui c’è un forte interesse a trovare soluzioni più compatte e meno costose alternative agli acceleratori convenzionali. Una possibile soluzione può essere ricercata nell’ambito degli acceleratori laser-driven. Infatti, se si utilizzasse un tale sistema di accelerazione il costo delle apparecchiature si ridurrebbe drasticamente: gli imponenti magneti utilizzati per il trasporto del fascio potrebbero essere sostituiti da più semplici ed economici sistemi ottici.
e il target potrebbe essere posizionato direttamente all’interno della gantry a pochi metri dal paziente. Tuttavia, le sostanziali differenze tra un pacchetto di particelle (detto ‘shot’) prodotto tramite interazione laser-target e i fasci convenzionali prodotti tramite un ciclotrone, quali per esempio l’alta intensità \(10^9 – 10^{11}\) ppb, particelle per bunch e la piccolissima durata temporale (dell’ordine del ns), stanno dettando l’esigenza di modificare o di redigere ex novo un protocollo per quello che concerne la dosimetria relativa ed assoluta [2].

Da qualche anno l’INFN ha stretto una collaborazione internazionale all’interno del progetto ELIMED, che ha lo scopo finale di realizzare una linea di trasporto per fasci di protoni laser-driven per applicazioni mediche. Nel presente lavoro di tesi, svolto presso l’Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud (INFN – LNS) di Catania nell’ambito del progetto ELIMED, sono state sviluppate e descritte le metodologie da adottare per effettuare una corretta dosimetria di fasci di protoni prodotti tramite interazione laser-target. Tali metodiche sono state verificate mediante uno studio preliminare con fasci clinici convenzionali di protoni sia monoenergetici che polienergetici, attualmente utilizzati anche durante trattamenti di adroterapia.

Ad oggi lo stato dell’arte è ben lontano dall’applicazione clinica e l’obiettivo di questo lavoro di tesi è stato di definire un modus operandi per quel che concerne la dosimetria e la spettroscopia di un fascio prodotto in seguito all’interazione laser-target. Per raggiungere questo scopo è stato utilizzato il fascio di protoni monoenergetico accelerato dal ciclotrone superconduttore presente ai LNS. Per simulare al meglio un fascio prodotto tramite laser, il fascio del ciclotrone è stato modificato con opportune metodologie che saranno descritte in seguito in maniera tale da aumentare lo spread energetico.

Questo lavoro è stato svolto utilizzando le attrezzature presenti nella sala CATANA sita nei LNS e, per la caratterizzazione del fascio di protoni, sono stati utilizzati, come dosimetri, due tipi di film:

1. GafChromic® Film HD 810;
2. GafChromic® Film EBT 3.

\[1\] Shot – con tale termine si indicano tutte quelle particelle prodotte in seguito all’invio sul target di un singolo impulso laser della durata di pochi nanosecondi.
La scelta è ricaduta sui RCF (RadioChromic Film) perché essi sono molto maneggevoli, non sono sensibili alla luce visibile e non richiedono alcun sviluppo chimico affinché su di essi si formino le immagini. Essi sono inoltre tessuto equivalente e la loro risposta è indipendente dal rateo di dose, per cui si prestano bene a dosi per impulso estremamente elevate, come nel caso di fasci laser-driven. Tali film, le cui caratteristiche sono ampiamente descritte nel capitolo 3, vengono impiegati, in questo lavoro, principalmente nella ricostruzione del picco di Bragg del fascio clinico di protoni e nelle misure di spettroscopia. La scelta di utilizzare un tipo di RCF anziché un altro è dettata principalmente dall’intensità della dose che sarà poi rilasciata su di essi, infatti ogni film presenta un range operativo differente. Nel corso dell’analisi dei dati è stato necessario introdurre un fattore, denominato g_{Q,Q_o}, che permette di correggere la sottostima di dose mostrata dai RCF soprattutto nella regione del picco di Bragg, dove sono attesi valori di LET più elevati.

Lo scopo del presente lavoro di tesi consiste, quindi, nel valutare le possibilità e le modalità con cui impiegare i suddetti film in dosimetria di fasci di protoni prodotti tramite interazione laser-target e di sviluppare un algoritmo per effettuare la spettroscopia di un fascio così prodotto. Alla fine di questo lavoro sono riportate le conclusioni scaturite dall’elaborazione e osservazione dei dati sperimentali acquisiti nel corso delle sessioni di misura effettuate.
CAPITOLO 1 – TECNICHE DI ACCELERAZIONE DI PARTICELLE CARICHE
In questo capitolo saranno trattati alcuni dei meccanismi di accelerazione tipicamente utilizzati oggi per accelerare particelle per scopi di ricerca e trattamenti di adroterapia. Sarà introdotto il nuovo metodo di accelerazione laser-target, descrivendo i processi fisici che avvengono e le caratteristiche di un fascio così accelerato. Infine si porrà l’attenzione sulla possibilità, in futuro, che questi innovativi sistemi di accelerazione possano sostituire quelli adottati oggi sia nei campi di ricerca che in ambito adroterapico, permettendo inoltre una possibile drastica riduzione dei costi.

1.1 Metodi di accelerazione tradizionali

I primi acceleratori di particelle, come i Van de Graaff o i Cockcroft-Walton, usavano campi elettrostatici per accelerare le particelle cariche. Nel 1920, Wideröe ideò i moderni acceleratori lineari. Al posto di utilizzare tensioni continue, cominciò ad applicare tensioni alternate tra ogni gap accelerante per accelerare le particelle ad energie maggiori. Quasi dieci anni dopo, Lawrence fu il primo ad applicare il lavoro di Wideröe agli acceleratori circolari con l’invenzione del ciclotrone, il quale si rivelò un ottimo mezzo attraverso cui effettuare ricerche in moltissimi campi della fisica nucleare, inclusi la produzione di nuclei instabili, di elementi non naturalmente presenti in natura e la possibilità di trattare i tumori con particelle cariche. Ancora oggi, la tecnologia sta facendo passi da gigante e la riprova è il più grande acceleratore mai costruito, LHC al CERN di Ginevra. [3]

1.1.1 Ciclotrone

Il ciclotrone è una macchina acceleratrice circolare che accelera particelle elettricamente cariche utilizzando campi elettrici ad alta frequenza e alta tensione insieme ad intensi campi magnetici. Le particelle cariche sono confinate, dagli effetti della forza di Lorentz, su un piano detto mediano dove è indotto un campo magnetico generato da due bobine posizionate simmetricamente rispetto al piano mediano.

Nel ciclotrone classico la focalizzazione è di tipo debole con la condizione, quindi, che l’indice di campo n sia compreso tra zero e uno, cioè il campo magnetico deve crescere all’aumentare del raggio. La cavità accelerante è composta da due semcilindri cavi a forma di D e chiamati appunto DEE. Uno di essi è posto a massa e l’altro è collegato ad un oscillatore, la cui frequenza è dell’ordine del MHz. Così facendo le particelle sentiranno il potenziale elettrico oscillante solo nella regione intermedia tra le due DEE. La particella da accelerare viene inserita nella regione centrale con una velocità perpendicolare al campo magnetico e parallela al piano mediano, dove sentirà l’azione della forza di Lorentz dovuta
al campo magnetico ed infine subirà un’accelerazione solamente quando si troverà tra i due DEE. Dalla combinazione di queste due forze si determina la caratteristica traiettoria a spirale.

Il principio su cui si basa il funzionamento del ciclotrone è la sincronizzazione tra la particella da accelerare e il campo elettrico oscillante:

\[\omega_0 = \frac{qB}{m} = \omega_{RF} = \text{cost} \]

dove \(q \) e \(m \) sono rispettivamente la carica e la massa della particella, \(B \) è il campo magnetico applicato, \(\omega_0 \) è la frequenza di rivoluzione della particella e \(\omega_{RF} \) è la frequenza di oscillazione del campo elettrico. Questa condizione non è più valida quando si raggiungono energie alte abbastanza da rendere non più trascurabili gli effetti relativistici sulla massa. Per ovviare a tale problema e per mantenere le caratteristiche quali l’alta intensità e la continuità del fascio si è pensato di modificare il campo magnetico in funzione del raggio. Applicando questa modifica l’indice di campo diviene negativo e quindi si perde focalizzazione verticale. Questo problema fu, definitivamente, risolto in seguito all’ideazione dei ciclotroni AVF (azimuthally varying field) e, per aumentare ulteriormente la focalizzazione verticale, si sfruttò l’effetto fringing lungo i bordi in cui è suddiviso il ciclotrone. Tale effetto è generato dal passaggio della particella da una valle ad una cresta ed è tanto più accentuato quanto più grande è l’angolo di incidenza della particella sul bordo. Infine, dato che serve più focalizzazione verso i raggi più esterni, si modellarono i bordi delle creste a forma di spirale in modo da aumentare l’angolo di incidenza del fascio all’aumentare del raggio.

Altri due punti importanti sono l’iniezione e l’estrazione. Il primo può avvenire in diversi modi e la scelta è dettata dal tipo di sorgente in dotazione con l’acceleratore e si può distinguere in due categorie:

1. Sorgenti interne;
2. Sorgenti esterne per iniezione radiale o per iniezione assiale, quest’ultima caratteristica delle sorgenti ECR.

L’estrazione può avvenire attraverso sistemi elettrostatici, con il problema di dover ottenere nelle ultime orbite una separazione molto netta, o per stripping, dove si possono raggiungere anche efficienze quasi del 100%.
1.1.2 Sincrotrone
Successivamente al ciclotrone, è stato progettato il sincrotrone per ovviare alle limitazioni imposte dalla relatività speciale riguardo l’energia massima ottenibile. Al contrario del ciclotrone, il raggio dell’orbita nel sincrotrone è pressoché costante all’aumentare dell’energia e può andare dai metri, per energie fino a poche centinaia di MeV, ai chilometri, per energie dell’ordine del TeV. La principale differenza con il ciclotrone è la presenza di tanti piccoli magneti che agiscono sul fascio a livello locale e che permettono il disaccoppiamento tra sistema accelerante e sistema curvante. In particolare i dipoli sono utilizzati per guidare il fascio e i quadrupoli per focalizzarlo. Il fatto di avere un raggio dell’orbita costante determina l’esigenza di variare i valori di campo magnetico, dei quadrupoli e dei dipoli, e della frequenza di oscillazione del campo elettrostatico accelerante in funzione dell’energia della particella da accelerare. Ciò significa che il sincrotrone è una macchina ciclica perché si ha la necessità di attendere la fuoriuscita del bunch di particelle prima di poter accelerare il successivo e si devono, inoltre, rispettare i tempi tecnici per la variazione del campo magnetico. Il problema della focalizzazione è stato risolto a partire dagli anni ’50 con l’introduzione del sistema di focalizzazione alternating focusing, che sfrutta il fenomeno derivante dall’ottica della focalizzazione netta derivante dall’uso successivo di lenti focalizzanti e defocalizzanti.

Questi metodi di accelerazione sono attualmente utilizzati per effettuare trattamenti adroterapici, in particolare il ciclotrone viene utilizzato ai LNS di Catania e il sincrotrone viene utilizzato al CNAO di Pavia. Nel seguente paragrafo sarà trattato il tema dell’adroterapia e dei vantaggi che tale metodologia di trattamento comporta.

1.2 Adroterapia
Il rapido progresso tecnologico degli ultimi anni ha portato ad un’evoluzione di tutti i settori della medicina e ha influenzato in maniera rilevante la radioterapia oncologica.

Oggi una nuova frontiera della radioterapia è rappresentata dall’adroterapia che utilizza protoni e nuclei atomici, generalmente indicati con il termine ioni, soggetti alla forza detta ‘nucleare forte’ e per questo motivo chiamati adroni (dal greco adróς, forte), da cui il termine adroterapia.

I vantaggi dell’adroterapia rispetto alla terapia tradizionale, effettuata con onde elettromagnetiche (raggi γ, raggi X), sono i seguenti:
Il rilascio di energia, e quindi la distruzione delle cellule, selettivo ed efficace per colpire solo le cellule tumorali. Il danno è relativamente modesto all’inizio della penetrazione nel corpo del paziente e solo in prossimità dell’arresto della particella, dove si trova il tumore, si ha notevole rilascio di energia (regione del picco di Bragg), con il vantaggio di minimizzare la distruzione dei tessuti sani, massimizzando la distruzione dei tessuti malati.

Il fascio di particelle adroniche resta collimato man mano che esso penetra nel materiale biologico. L’elevata collimazione dei fasci di adroni permette una ulteriore minimizzazione del danno ai tessuti sani.

Il meccanismo di rilascio dell’energia per gli adroni causa una grande quantità di rotture nei legami chimici presenti nelle macromolecole biologiche, in particolare nel DNA. Quest’ultimo ha la proprietà di auto-ripararsi, ma se il numero di legami rotti è eccessivo perde la sua funzione di auto replicarsi e la cellula si inatta e muore. Nella radioterapia tradizionale il danno al DNA è modesto e ciò non si verifica nell’adroterapia con ioni carbonio nella quale il gran numero di rotture permette di distruggere anche tumori radioresistenti alla terapia tradizionale.

L’insieme di questi tre vantaggi comporta una efficacia distruttiva notevole sui tessuti biologici, ragion per cui il bersaglio (tumore) deve essere posizionato con una precisione millimetrica, assai più elevata rispetto alla radioterapia tradizionale.

Per eseguire l’adroterapia sono necessari:

- un acceleratore di protoni e/o di ioni come ad esempio gli acceleratori circolari chiamati ciclotrone e sincrotrone;
- un sistema di trasporto dei fasci dall’acceleratore alle sale di trattamento;
- un sistema estremamente preciso di posizionamento del paziente;
- un sistema molto accurato di controllo del rilascio di energia (dose);
- un piano tridimensionale di trattamento personalizzato sul paziente ottenuto integrando le immagini diagnostiche (TC, RM, PET).

E’ bene specificare che, essendo l’adroterapia una terapia relativamente giovane, le indicazioni consolidate sono ancora limitate a tumori solidi, non infiltranti e fissi e a tumori rari scarsamente responsivi alle tecniche di radioterapia convenzionale. Tra questi: melanomi oculari, in particolare della coroide e dell’iride ai LNS a Catania e i melanomi
dell’uvea, i tumori della base del cranio e della colonna (cordomi, condrosarcomi a basso grado, meningiomi) e alcuni tumori solidi pediatrici al CNAO presso Pavia. [4]

Le particelle vengono accelerate attraverso ciclotroni o sincrotroni e a seconda dell’energia che raggiungono possono essere utilizzate per trattare regioni tumorali che si trovano più o meno in profondità. In particolare, con il ciclotrone superconduttore presente ai LNS è possibile accelerare le particelle fino a 62 MeV ciò comporta la possibilità di trattare solo regioni che si trovano al massimo a 3 cm di profondità, invece con energie di 200-250 MeV è possibile arrivare sino a profondità di 20-30 cm nei tessuti biologici.

Figura 1.1 – Comparazione qualitativa tra le curve di depth-dose relative ai raggi X ed ad un fascio di protoni modulato e non modulato (energia arbitraria)

1.3 Sviluppi futuri: Acceleratori Laser Driven.

La ricerca nel campo degli acceleratori ha avuto sicuramente un ulteriore stimolo anche grazie allo sviluppo di macchine per uso clinico. Ed ancora oggi si è alla ricerca di macchine sempre più performanti e che siano in grado di superare i limiti che gli attuali sistemi di accelerazione impongono, quali per esempio gli alti costi di realizzazione e di manutenzione e le grandi dimensioni occupate. A questo scopo, in questi ultimi anni si sta diffondendo l’interesse ad introdurre un nuovo tipo di acceleratori laser-driven, che sfrutta l’interazione laser-target e che in futuro potrebbe essere utilizzato anche in ambito medico. Infatti, con questo tipo di acceleratori sarà possibile realizzare gantry, meno ingombranti e costosi, in grado di ruotare intorno al paziente così come avviene per la radioterapia convenzionale con i LINAC.

1.3.1 Interazione laser-target.

All’incirca alla fine degli anni 90, l’avvento della tecnica di manipolazione degli impulsi laser detta CPA (Chirped Pulse Amplification) ha reso possibile ottenere impulsi temporalmente cortissimi, decine di femtosecondi, e potenze elevatissime, \(P=10^{19} \text{W} \).
Durante l’interazione tra impulsi laser ultracorti con picchi di intensità superiori a 10^{18} W/cm^2 con target solidi, la parte più intensa dell’impulso interagisce con un preplasma ad alta temperatura ed è in grado di ionizzare la parte anteriore del target. Questo preplasma viene formato dal preimpulso del segnale laser che è già sufficientemente intenso da ionizzare la materia e proviene dall’amplificazione dell’emissione spontanea (ASE), presente in ogni catena laser. All’arrivo dell’impulso principale, gran parte dell’energia laser viene assorbita e convertita in energia cinetica dagli elettroni. Questi elettroni caldi vengono espulsi dallo spot focale del laser a causa della forza ponderomotrice\(^2\). Si crea così una distribuzione positiva di carica nella faccia anteriore del target. Inoltre gli elettroni, che acquisiscono un’energia dell’ordine dei MeV, si propagano attraverso il target e sfuggono dalla faccia posteriore creando anche lì un forte campo elettrico dato dalla separazione di carica. I campi elettrici così creati sono capaci di accelerare gli ioni fino a energie dell’ordine dei MeV.

In generale, l’interazione tra laser e materia può essere suddivisa in tre fasi:

1. Interazione laser – target con trasferimento di energia e produzione del plasma; caratterizzata dai processi di ionizzazione e dall’effetto sputtering;
2. Interazione della restante parte dell’impulso laser con il plasma formato nella fase precedente dove si verificano i processi di assorbimento risonante e di Bremsstrahlung inverso;
3. Espansione adiabatica del plasma e accelerazione degli ioni.

\(^2\) forza subita da una particella carica in un intenso campo elettrico oscillante e non omogeneo.
1.3.1.1 Produzione del plasma

Prima di trattare i processi con cui si produce il plasma durante l’interazione laser – target definiamo il plasma. Esso è un gas ionizzato, costituito da un insieme di elettroni e ioni e globalmente neutro. Essendo però costituito da particelle cariche, i moti complessivi delle particelle del plasma sono in gran parte dovuti alle forze a lungo raggio che si vengono continuamente a creare, e che tendono a mantenere il plasma neutro; questo fatto stabilisce una differenza importante rispetto ai gas ordinari, nei quali i moti delle particelle sono dovuti a forze che si estendono al massimo per qualche primo vicino [5]. In quanto tale, il plasma è considerato come il quarto stato della materia, che si distingue quindi dal solido, il liquido e l’aeriforme.

L’interazione di un impulso laser con intensità $I_L > 10^7$ W/cm2 con un materiale provoca la vaporizzazione dei primi strati del bersaglio. Il materiale asportato può interagire con la radiazione incidente, assorbendola o schermando la superficie del bersaglio, in relazione alla durata dell’impulso e alla sua intensità. Ne deriva che la profondità del cratere prodotto sarà funzione di questi due parametri ed in particolare sarà tanto maggiore quanto più lungo sarà l’impulso e più intensa sarà la radiazione.

Per intensità $I_L > 10^{10}$ W/cm2 il materiale vaporizzato sarà anche ionizzato attraverso fenomeni quali l’assorbimento multifotonico e la distorsione dei livelli energetici per effetto del campo dell’onda elettromagnetica, mentre nelle fasi successive gli elettroni liberi provocheranno collisioni che indurranno alla ionizzazione del plasma. Però prima introduciamo i processi di ionizzazione e di sputtering.

I meccanismi che precedono e determinano la produzione del plasma sono i processi di sputtering e di ionizzazione. I primi si possono verificare secondo quattro modalità differenti:

1. termico, riferito all’evaporazione veloce da un target riscaldato, la temperatura richiesta è maggiore di quella del punto di fusione o ebollizione. Il rate di vaporizzazione può essere calcolato dalla seguente formula:

$$\frac{\text{Depth}}{\text{pulse}} = \frac{P_{atm} T_{max}^{0.5} \tau_p}{M^{0.5} \Delta H_p} \times 1.53 \times 10^6 \text{ nm/pulse}$$
dove P_{atm} è la pressione ambiente (in atm), T_{max} è la temperatura massima di superficie (in K), M è il peso molecolare (in uma), H_v è il calore di vaporizzazione (in eV) a τ_p è la durata dell’impulso laser;

2. elettronico, che include processi di ionizzazione ed eccitazione. Il risultato è che il sistema effettua una transizione dallo stato solido legato a quello di un gas molto denso, con la conseguente espulsione di particelle. Solitamente ciò si verifica quando l’impulso laser è abbastanza intenso ed è facilitato dalla presenza di difetti sulla superficie del target, anche per impulsi laser di bassa energia;

3. esfoliante, che avviene quando il sistema presenta un’alta espansione termica lineare;

La ionizzazione avviene in seguito al cosiddetto effetto fotoelettrico, dovuto all’assorbimento di un singolo fotone o può essere provocata, anche, dall’effetto multifotonico: l’elettrone assorbe contemporaneamente un numero minimo di fotoni fino a che avviene la ionizzazione, ovvero che la particella acquisti una energia cinetica minima, questo processo dipende principalmente dalla densità dei fotoni e avviene con un rate che è decrescente all’aumentare del numero di fotoni coinvolti nel processo:

$$\Gamma_n = \sigma_n I_L^n$$ \hspace{1cm} 1.3

doche σ_n è la sezione d’urto del processo di ionizzazione e I_L^n rappresenta l’intensità del laser. Inoltre si può verificare un altro effetto chiamato ATI (Above Threshold Ionization) che permette all’elettrone di assorbire un numero di fotoni maggiore rispetto all’effetto multifotonico e quindi in questo caso l’elettrone avrà un’energia cinetica maggiore e data da:

$$E_f = (n + s)\hbar\omega - E_{ion}$$ \hspace{1cm} 1.4

doche n rappresenta il numero minimo di fotoni necessari per la ionizzazione ed s quelli assorbiti in eccesso.
Il materiale ionizzato e asportato si espande all’indietro formando una nube molto calda e rarefatta, il pre-plasma. Quando la radiazione attraversa questa nuova regione, oltre a subire una piccola attenuazione, si ha un defocalizzazione indotta dal differente indice di rifrazione del plasma:

\[
\eta(r, t) = \left(1 - \frac{n_e(r, t)}{n_c}\right)^{1/2}
\]

dove \(n_e(r, t)\) è la densità locale degli elettroni e \(n_c\) è la densità critica definita come \(n_c = \frac{m_\omega^2}{4\pi e^2}\) in cui \(\omega = \omega_{\text{laser}}\). Al precedente effetto si contrappone l’effetto, denominato autofocalizzazione relativa, che interviene quando un fascio laser viene focalizzato su un plasma. In questo caso la massa elettronica media, \(\langle \gamma \rangle m_e\), aumenta durante l’oscillazione nel campo laser in modo dipendente dall’intensità locale. Questo porta ad un aumento dell’indice di rifrazione nel centro del fascio rispetto ai bordi. Questa focalizzazione domina sulla defocalizzazione descritta precedentemente quando la potenza supera un certo valore limite espresso dalla seguente formula:

\[
P_{\text{lim}} = 17.4 \left(\frac{n_{\text{critica}}}{n_e}\right) \text{ espressa in [GW]}
\]

1.3.1.2 Eccitazione del plasma ed espansione.

Una volta attraversata la nube, la radiazione, che continua a giungere sul target, sarà assorbita dalla materia presente prima della cosiddetta superficie critica. Con tale denominazione viene indicata la regione in cui la densità elettronica del plasma assume il valore critico pari a \(n_c\); la presenza o meno di tale superficie dipende dal tipo di materiale su cui incide la radiazione. Infatti se un fascio laser incide su materiale gassoso, il plasma prodotto avrà una densità elettronica \(n_e\) minore della densità critica e in tal caso si parlerà di plasma \textit{underdense} e l’onda si propagherà in maniera indisturbata in esso. L’interazione con un materiale solido, invece, comporta un’analisi più complessa ed il plasma che si verrà a creare presenterà una densità maggiore della densità critica \(n_c\). In tal caso si parlerà di plasma \textit{overdense} e apparirà opaco alla radiazione.
La radiazione che incide su quest’ultimo tipo di plasma provocherà un riscaldamento e quindi un aumento del grado di ionizzazione dovuto ai fenomeni di assorbimento risonante e di Bremsstrahlung inverso.

Il meccanismo di bremsstrahlung inverso è un processo collisionale, predominante quando $I\lambda^2 < 10^{15} \text{ W } \mu\text{m}^2/\text{cm}^2$, che permette al plasma di assorbire energia elettromagnetica dal laser. Gli elettroni liberi interagiscono con il campo elettromagnetico del fascio laser, con frequenza ω, iniziando ad oscillare con velocità v_e:

$$v_e = v_{os}\sin(\omega t)$$

dove v_{os} è l’ampiezza delle oscillazioni.

Gli elettroni quindi continuamente assorbono energia dal campo elettromagnetico del laser e la cedono attraverso urti elastici agli ioni. Il processo di bremsstrahlung inverso è dipendente dalla temperatura del plasma e dalla frequenza dei fotoni e il coefficiente di assorbimento per bremsstrahlung inverso per una radiazione di frequenza ν è:

$$\sigma_{1B} = 3.7 \times 10^8 \frac{Z^3 n_i^2}{T_e^{1/2} v_e^3} \left(1 - e^{-\frac{\hbar \nu}{k_B T_e}}\right)$$

con Z lo stato di carica dello ione, n_i la sua densità in cm$^{-3}$, T_e la temperatura degli elettroni in eV, $\hbar \nu$ espressa in eV e σ_{1B} in cm$^{-1}$.

Quando, invece, l’intensità del laser è tale che $I\lambda^2 > 10^{15} \text{ W } \mu\text{m}^2/\text{cm}^2$ l’interazione laser-target cambia notevolmente rispetto a quando la condizione sopra non è verificata. Infatti si ha un aumento repentino della velocità e le collisioni diventano trascurabili. Un ulteriore fattore che riduce la frequenza delle collisioni si verifica quando la velocità di oscillazione degli elettroni v_{os} diventa confrontabile con la loro velocità termica v_{te}; infatti in tal caso la frequenza collisionale effettiva si riduce e sarà proporzionale a:

$$v_{eff} \propto \frac{\nu_{te}}{\sqrt{v_{os}^2 + v_{te}^2}}$$

Tra tutti i processi collision less, che permettono di accoppiare l’energia del laser al plasma il più importante è l’assorbimento risonante.

L’assorbimento risonante è un fenomeno di eccitazione che si verifica quando l’onda elettromagnetica, con un certa polarizzazione p, incide obliquamente sulle onde del plasma
eccitandole ed in seguito al suo smorzamento si ha il trasferimento di energia al plasma. La relazione di dispersione è:

\[\omega^2 = \omega_p^2 + k^2 c^2 \] \hspace{1cm} (1.10)

in cui \(\omega \) indica la frequenza di oscillazione della radiazione incidente, \(\omega_p \) la frequenza del plasma, \(k \) il vettore d’onda e \(c \) la velocità della luce. Si nota che, quando \(\omega < \omega_p \), l’onda elettromagnetica smette di propagarsi ed ha un decadimento esponenziale, mentre se \(\omega > \omega_p \), l’onda viaggia ‘indisturbata’ all’interno del plasma che gli appare ‘trasparente’.

Il valore locale di \(\omega_p \) aumenta man mano che la radiazione si propaga all’interno del plasma fino a raggiungere il valore della frequenza di oscillazione della radiazione: \(\omega = \omega_p \). La regione in cui si verifica questa condizione è detta superficie critica ed è caratterizzata da una densità pari proprio a quella critica definita come:

\[n_c = 1.1 \times 10^{27} \times \lambda^{-2} \quad [m^{-3}] \] \hspace{1cm} (1.11)

dove \(\lambda \) è la lunghezza d’onda del laser espressa in \(\mu m \).

Infine, la pressione creata nel plasma in seguito al suo riscaldamento porta ad una sua espansione con una velocità prossima a quella del suono:

\[c_s = \left(\frac{Z^+ k_B T_e}{m_i} \right) \approx 3.1 \times 10^7 \left(\frac{T_e}{keV} \right)^{1/2} \left(\frac{Z^+}{A} \right)^{1/2} cm s^{-1} \] \hspace{1cm} (1.12)

con \(k_B \) costante di Boltzmann, \(T_e \) temperatura degli elettroni e \(m_i \) massa degli elettroni.

1.3.2 Accelerazione di ioni attraverso l’interazione laser - target

L’accelerazione di ioni proveniente dal lato del bersaglio non irradiato è stato identificato come il più efficace meccanismo per generare fasci ionicì di alta qualità, in termini di numero di particelle, durata dell’impulso e collimazione. I meccanismi di accelerazione sono principalmente due:

1. TNSA (Target Normal Sheat Acceleration);
2. RPA (Radiation Pressure Acceleration).

Il meccanismo che tratteremo in maggior dettaglio è il regime TNSA mostrato in Figura 1.3.
1.3.2.1 TNSA (Target Normal Sheat Acceleration)

Durante l’interazione tra un’intensa onda elettromagnetica e un solido, la superficie colpita direttamente dal pre-impulso laser sarà ionizzata formando un plasma. La parte restante dell’impulso laser interagisce con il plasma, attraverso i vari processi spiegati precedentemente. In particolare gli elettroni acquistano energie dell’ordine del MeV e raggiungono valori di libero cammino medio sufficienti a permettere loro di penetrare sia la superficie del plasma che lo spessore del target. Questi elettroni caldi si diffondono sia in direzione concorde con il fascio laser sia in verso opposto. Quelli che si propagano nel target, dopo aver raggiunto la superficie posteriore, si espandono formando nel vuoto una nube di elettroni relativistici delle dimensioni di molte lunghezze di Debye\(^3\). Lo sbilanciamento di carica, dovuto alla presenza della nube, determina un campo elettrico estremamente intenso in direzione longitudinale che sarà responsabile dell’accelerazione degli ioni. Infatti il meccanismo di accelerazione ha luogo appunto sulla faccia posteriore del target dove l’altissima intensità del campo elettrico produce, prima, la ionizzazione degli atomi presenti e, poi, l’accelerazione degli stessi.

![Figura 1.3 – Schema del meccanismo TNSA](image)

I protoni accelerati a qualche MeV non provengono direttamente dalla materia che compone il target ma da contaminazioni contenenti idrogeno che si trovano sulla superficie di esso, quali idrocarburi o vapore d’acqua. Lo spettro energetico dei protoni è tipicamente

\(^3\) La lunghezza di Debye è la distanza nel plasma oltre la quale la carica di uno ione risulta sostanzialmente schermata da parte delle cariche degli ioni circostanti.
esponenziale decrescente con un cut-off ben determinato ad energie dell’ordine delle decine di MeV.

Figura 1.4 – Schematizzazione del processo TNSA [6]

Molti modelli teorici sono stati elaborati per descrivere il regime TNSA, quello che sarà trattato brevemente adesso sarà quello sviluppato da Passoni [7], il quale predice il cut-off e dà una buona interpretazione del meccanismo di accelerazione.

Gli elettroni coinvolti nel regime TNSA possono essere distinti in due differenti popolazioni. La prima è costituita da quelli caldi, i quali sono stati creati direttamente in seguito all’interazione dell’impulso laser con il plasma sul lato anteriore del target. Essi posseggono una densità prossima a quella critica \(n_{eh} \approx 10^{20} - 10^{21} \text{ cm}^{-3} \) e la loro temperatura è dell’ordine del potenziale ponderomotivo\(^4\) \((T_{eh} \approx MeV) \). Il moto di questi elettroni caldi all’interno del target deve essere compensato localmente da una corrente opposta. In un target metallico questa corrente è prodotta dagli elettroni di conduzione, i quali sono messi in moto dal campo elettrico prodotto dagli elettroni caldi. La densità di questi elettroni freddi è dell’ordine della densità del solido in questione quindi molto maggiore di quelli caldi \(n_{eh} \). Ciò determina che la velocità e quindi la temperatura di questi elettroni freddi deve essere molto più bassa rispetto a quelli caldi.

Anche gli ioni possono essere separati in due popolazioni differenti: quelli pesanti, con carica \(Z_{iH} \) e densità \(n_{iH} \), e quelli leggeri, con carica \(Z_{iL} \) e densità \(n_{iL} \).

L’accelerazione è molto più efficiente per gli ioni leggeri ed è favorita dalla presenza di quelli pesanti, infatti questi ultimi forniscono la carica positiva necessaria a determinare la

\(^4\) Definito come: \(\phi_{pond} = \frac{e^2 E_L^2}{4 m_e \omega_L^2} \). Dove \(E_L \) è l’energia massima dell’impulso laser e \(\omega_L \) la sua pulsazione.
differenza di potenziale tale da generare l’alto campo accelerante, anche dell’ordine del TV/m.

Nel modello elaborato da Passoni et al. si assume una geometria bi-dimensionale e si descrive la popolazione elettronica come una distribuzione di due temperature $n_e = n_{eh} + n_{ec} \approx n_{ec}$. Inoltre il target viene considerato come un piano costituito da plasma, questa approssimazione può andare bene visto che il plasma è formatto dal pre-impulso ed è il picco dell’impulso laser ad interagire con il plasma. L’equazione di Poisson per il potenziale auto-consistente è:

$$\frac{d^2 \phi}{dt^2} = 4 \pi e (n_e - Z_{li}n_{li} - Z_{li}n_{li}).$$ \hspace{1cm} \text{(1.13)}$$

Per impulsi di breve durata, l’interazione laser-target avviene in tempi tali da poter considerare solo il moto degli ioni leggeri mentre quelli più pesanti possono considerarsi immobili. Però data la bassa densità l’effetto che gli ioni leggeri provocano sul potenziale elettrostatico si può considerare trascurabile. Inoltre, si assume costante la popolazione degli elettroni freddi $n_{ec} \approx n_{0c}$ mentre quella degli elettroni caldi è assunta in equilibrio termico con il potenziale elettrostatico, descritto dalla distribuzione di Boltzmann.

Gli elettroni più energetici possono lasciare il sistema uscendo dal potenziale auto-consistente poiché la soluzione auto-consistente del potenziale diverge all’aumentare della distanza dal target. Adesso si possono descrivere gli elettroni caldi assumendo una funzione di distribuzione della temperatura di Maxwell-Juttner e considerando solo gli elettroni con un’energia negativa, cioè solo quelli legati. Con queste assunzioni la soluzione del potenziale elettrostatico alla superficie del target è funzione della temperatura T e dell’energia massima degli elettroni legati, $\varepsilon_{e,max}$:

$$\phi(0) = \phi(T, \varepsilon_{e,max})$$ \hspace{1cm} \text{(1.14)}$$

Per calcolare l’energia massima degli ioni e lo spettro energetico bisogna determinare la temperatura degli elettroni caldi, da cui dipende anche la massima energia di legame, attraverso la seguente:

$$T_h = m_e c^2 \left(\sqrt{1 + \frac{a_0^2}{2}} - 1 \right)$$ \hspace{1cm} \text{(1.15)}$$
che è collegata all’irradianza del laser, $I \lambda^2$ attraverso il parametro a_0^5.

L’energia massima dei protoni, detta anche energia di cut-off dello spettro è definita da:

$$E_{\text{cut-off}} = Z_{\text{lL}} \cdot \phi(0).$$ \hspace{1cm} \textit{1.16}

Nonostante le forti ipotesi formulate in precedenza il modello descrive con successo l’accelerazione dei protoni nel regime TNSA ed è compatibile con i risultati sperimentali che mostrano una dipendenza dell’energia di cut-off da $I^{1/2}$.

La principale caratteristica del regime TNSA è che lo spettro energetico mostra un andamento esponenziale decrescente all’aumentare dell’energia con un ben definito cut-off.

Figura 1.5 – Esempio di spettro di emissione di protoni accelerati in regime TNSA [2]

Inoltre, è stato verificato che il fascio presenta una divergenza angolare dipendente dall’energia come mostrato nella seguente Figura 1.6.

--

5 Questo parametro è denominato laser strenght parameter e è definito attraverso:

$$a_0 = \frac{e}{m_e c^2} \sqrt{\frac{I_0 \lambda \omega}{\pi c}}$$

Dove: m_e è la massa dell’elettrone, I_0 è l’intensità del picco del laser e λ è la lunghezza d’onda del laser. In particolare esso definisce se il regime di interazione laser plasma è non relativistico $a_0 \ll 1$ o relativistico $a_0 \geq 1$.

22
L’efficienza di accelerazione con il metodo TNSA può essere migliorata incrementando l’efficienza di trasferimento dell’energia dal laser al target; a tale scopo molti gruppi di ricerca stanno verificando quanto la forma e le dimensioni del target possono influire sullo spettro finale, (un risultato preliminare ottenuto recentemente è che l’energia massima ottenibile è inversamente proporzionale alle dimensioni del target).

Un altro metodo di accelerazione, come anticipato, è il Radiation Pressure Acceleration (RPA). Questo metodo non è ancora stato testato in laboratorio, ma studi effettuati attraverso simulazioni mostrano che tale metodo potrebbe, un giorno, rimpiazzare il regime TNSA, infatti, si nota che se si irraggia un target sottile con un impulso laser di intensità superiore a 10^{23} W/cm2 si potrebbero accelerare ioni fino ad energie dell’ordine del GeV/amu ed inoltre si è visto che l’energia dello ione sarebbe dipendente dalle caratteristiche dell’impulso laser.

1.3.3 Possibili alternative future – Accelerazione laser-target ed ELI-Beamlines.

Il continuo sviluppo nel campo degli acceleratori sta portando a costruire macchine sempre più compatte e performanti, ma solo i nuovi acceleratori con sorgenti laser-target promettono, oltre di ottenere in futuro macchine con performance migliori di quelli attuali, di ridurre i costi e di semplificare il sistema di trasporto del fascio. Molti gruppi nel mondo stanno sviluppando tale tecnologia, in particolare i Laboratori Nazionali del Sud – INFN di Catania è coinvolto nel progetto Extreme Light Infrastructure - Beamlines (ELI-Beamlines).

ELI è un progetto europeo, che coinvolge circa 40 istituti di ricerca ed istituzioni accademiche di 13 paesi membri dell’UE, formando una struttura paneuropea, che si propone di ospitare il laser più intenso di tutto il mondo ed ELI-Beamline è parte di tale progetto.

In particolare, in questo lavoro di tesi si è valutato come la dosimetria convenzionale adottata sino ad oggi con fasci clinici possa essere adattata anche con questi fasci prodotti tramite laser. Infatti, a causa dell’altissima intensità ci si aspetta un’importante effetto di saturazione da parte delle camere Markus, utilizzate oggi come dosimetri assoluti; ciò determina l’impossibilità di utilizzarle per la dosimetria di tali fasci. Esse saranno comunque utilizzate per la calibrazione di altri rivelatori, i GAFchromic, che invece risultano utilizzabili in quelle condizioni.
CAPITOLO 2 – INTERAZIONE RADIAZIONE - MATERIA ED ELEMENTI DI DOSIMETRIA
In questo capitolo verranno descritti i meccanismi attraverso i quali protoni e ioni, opportunamente accelerati, perdono la loro energia nella materia e i motivi per i quali sono, da un punto di vista balistico e non solo, da preferire nei trattamenti radioterapici rispetto ai raggi X oggi largamente utilizzati. Verranno descritte le proprietà delle radiazioni e gli effetti che queste producono nella materia vivente attraverso l’introduzione di grandezze radiobiologiche. Infine saranno descritte le principali grandezze definite dall’ICRU (International Commission on Radiation Units & Measurements) che costituiscono il riferimento in ambito dosimetrico.

2.1 Interazione radiazione – materia.

2.1.1 Tipi di radiazione
Le radiazioni possono essere distinte in elettromagnetiche e corpuscolari: le prime sono costituite da campi elettromagnetici oscillanti con determinata frequenza che si propagano nel vuoto con velocità pari a quella della luce; le seconde sono costituite da particelle atomiche o subatomiche.

Le radiazioni vengono suddivise principalmente in due gruppi: radiazioni ionizzanti e radiazioni non ionizzanti. Con il termine radiazione ionizzante vengono indicate quelle radiazioni che posseggono almeno un’energia tale da ionizzare l’atomo di idrogeno, cioè 13,6 eV, mentre tutte le altre sono dette non ionizzanti. L’elettronVolt (eV) è l’unità di misura utilizzata per definire l’energia della radiazione e indica l’energia che acquista un elettrone se sottoposto ad un potenziale di 1 V. Quando le radiazioni attraversano la materia cedono in essa una frazione o tutta la loro energia e possono produrre lungo il loro tragitto, se dotate di energia sufficiente, alterazioni a livello atomico. È questo il primo evento di tipo fisico di una lunga sequenza di reazioni secondarie di tipo chimico che, nella materia vivente, possono dare luogo ad effetti biologici. In particolare, l’interazione iniziale delle radiazioni con la materia dipende, sia qualitativamente che quantitativamente, dalla natura, dalla massa, dalla carica e soprattutto dall’energia della radiazione considerata. [9]

La caratteristica di una radiazione di poter ionizzare un atomo, o di penetrare più o meno in profondità all’interno della materia, dipende oltre che dalla sua energia anche dal tipo di radiazione e dal materiale con il quale avviene l’interazione. Da sempre l’uomo è soggetto all’azione di radiazioni ionizzanti naturali, alle quali si da il nome di fondo di radioattività naturale. Questo parametro si prende come riferimento per eventuali valutazioni di rischio
radioprotezionistico. All’interno della classe delle radiazioni ionizzanti si esegue un’ulteriore distinzione in due sottocategorie principali: quelle che producono ioni in modo diretto, dette direttamente ionizzanti (le particelle cariche pesanti, elettroni e positroni), e quelle che producono ioni in modo indiretto, dette indirettamente ionizzanti (neutroni, raggi γ e raggi X) [10].

2.1.2 Radiazioni direttamente ionizzanti
I meccanismi con cui le radiazioni direttamente ionizzanti interagiscono a livello atomico con la materia sono le eccitazioni e le ionizzazioni. Nel primo caso l’energia ceduta è inferiore a quella necessaria ad espellere dall’atomo uno dei suoi elettroni dell’orbitale più esterno, detto di valenza, la cui energia di legame è dell’ordine della decina di eV. In seguito a questa interazione l’atomo passa dallo stato fondamentale ad uno eccitato provocando lo spostamento di uno o più elettroni da un orbitale ad uno superiore. Nel caso di ionizzazione l’energia ceduta dalla radiazione supera quella di legame dell’elettrone e di conseguenza l’elettrone legato all’atomo di appartenenza.

Una caratteristica delle particelle cariche pesanti, è la loro tipica curva di ionizzazione; questa curva comporta il rilascio di una dose relativamente bassa di energia lungo tutto il percorso degli adroni, eccezion fatta per una piccola regione dove ha luogo il cosiddetto picco di Bragg, nel quale le particelle si arrestano cedendo tutta la loro energia.

2.1.3 Interazione di particella cariche pesanti con la materia
L’interazione che una particella carica pesante ha con la materia è in qualche modo differente rispetto a quella che avviene tra elettroni o positroni con la materia, ciò a causa della differenza in massa tra i due tipi di particella. Infatti il termine particelle cariche pesanti si riferisce a tutti gli ioni dai protoni (Z=1) a tutte quelle particelle cariche aventi massa a riposo maggiore di quella degli elettroni.

Quando le particelle cariche pesanti attraversano la materia possono interagire con i nuclei e gli elettroni del materiale attraversato che si trovano in prossimità della loro traiettoria. Tale interazione è caratterizzata da perdite di energia e da deflessioni dalla direzione di incidenza e prosegue fintanto che gli ioni non dissipano tutta la loro energia attraverso i processi di:

- collisione anelastica con gli elettroni atomici del materiale attraversato;
- scattering elastico dai nuclei.
Avvengono anche altri processi quali emissione di radiazione Cherenkov, reazioni nucleari e bremsstrahlung; ma tali processi non sono trattati qui in dettaglio poiché hanno sezioni d’urto notevolmente inferiori e quindi un effetto trascurabile.

2.1.3.1 Stopping power

Le particelle cariche pesanti perdono la maggior parte della loro energia a causa delle frequenti collisioni anelastiche con gli elettroni atomici, talmente frequenti che sembra che tali particelle perdano la loro energia in maniera continua, anche se tali collisioni sono in realtà di natura statistica. L’energia rilasciata ad ogni interazione dipende dalla prossimità con cui avviene e a seconda dell’intensità si può tradurre nella semplice eccitazione di un elettrone ad una shell atomica superiore o nella ionizzazione dell’atomo, permettendo così all’elettrone, con una certa energia cinetica, di lasciare l’atomo. Questi elettroni secondari, se dotati di energia sufficiente a effettuare ulteriori ionizzazioni, prendono il nome di raggi δ. Il range di tali particelle è insignificante rispetto a quello degli ioni primari infatti essi depositano la loro energia nelle immediate vicinanze del punto in cui sono state create.

Dato che, come detto, a causa dell’altissimo numero di eventi, le fluttuazioni nella perdita di energia totale sono piccole si può tranquillamente ragionare in termini di energia media persa per unità di percorso \(S = \frac{dE}{dx} \); questa quantità prende il nome di Potere frenante o Stopping power ha come unità di misura il MeV/cm, ma spesso viene anche espresso come \(S/\rho \), denominato potere frenante massico espresso in MeV*cm²/g. così i valori ottenuti saranno indipendenti dal valore della densità del materiale attraversato. I primi a dare una espressione corretta per il potere frenante furono Bethe e Bloch che portarono a termine un calcolo usando i metodi della meccanica quantistica; la formula ottenuta è la seguente:

\[
\frac{-dE}{dx} = 2\pi N I r_e^2 m_e c^2 \rho \frac{Z}{\beta^2} \left[\ln \left(\frac{2m_e y^2 v^2 W_{\text{max}}}{I^2} \right) - 2 \beta^2 - \delta - 2 \frac{C}{Z} \right] \tag{2.1}
\]

dove \(I, Z, A e \rho \) sono rispettivamente il potenziale di prima ionizzazione, il numero atomico, il peso atomico e la densità del materiale attraversato, \(z \) è la carica delle particelle incidenti in unità di e, mentre, \(W_{\text{max}} \) è la massima energia trasferita in una singola collisione, che è pari a \(W_{\text{max}} = 4Em_0/m \) o approssimativamente a 1/500 dell’energia della particella incidente per nucleone. Il termine \(\delta \) è detto correzione di densità ed è significativo solo ad alte energie e tiene conto del fatto che il campo elettrico delle particelle incidenti tende a polarizzare gli atomi lungo il loro percorso, tanto che gli elettroni lontani sentono un campo
elettrico effettivo meno intenso; infine, C è il fattore di correzione di shell, ed è importante nel caso in cui la velocità delle particelle incidenti è paragonabile alla velocità orbitale degli elettroni di valenza; quando, cioè, non è valida l’ipotesi che questi ultimi siano fermi rispetto alle particelle incidenti.

Il potere frenante dE/dx delle particelle cariche pesanti dipende dall’energia cinetica delle stesse; in particolar modo dE/dx diminuisce al crescere dell’energia cinetica a causa del termine $1/\beta^2$, che compare nella seguente formula:

$$
-\frac{dE}{dx} = 2\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \beta^2 \left[\ln \left(\frac{2m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 - \delta - 2 \frac{C}{Z} \right]
$$

fino al così detto punto di minima ionizzazione (per energie dell’ordine delle decine di MeV); oltre tale punto prevale il termine logaritmico della stessa formula per cui dE/dx comincia lentamente ad aumentare. Tale comportamento implica che le particelle cariche pesanti perdano la maggior parte della loro energia nell’ultimo tratto del loro percorso; cioè, quando la loro energia cinetica scende sensibilmente sotto il valore corrispondente al punto di minima ionizzazione. La Figura 2.2 mostra l’andamento di dE/dx in funzione del percorso fatto, la curva corrispondente è nota come curva di Bragg.
Figura 2.2 - Descrizione qualitativa della ionizzazione specifica, in funzione dello spessore attraversato, per particelle cariche pesanti. [11]

Questa caratteristica delle particelle cariche pesanti, e in particolare dei protoni, è, come vedremo meglio più avanti, alla base dei vantaggi della protonterapia nella cura e nel controllo locale di alcuni tipi di tumori.

2.1.3.2 Range delle particelle cariche pesanti

La distanza coperta da una particella all’interno di un qualsiasi materiale è un’informazione di notevole importanza e quindi è opportuno definire tale grandezza e i metodi con cui è possibile misurarla. Questa distanza è chiamata Range della particella; esso può essere misurato sperimentalmente, ed è definito come la distanza percorsa dalla particella in un materiale, prima di perdere tutta la propria energia.

Questa quantità dipende dal tipo di particella, dalla sua energia e dal tipo di materiale in cui si propaga. In teoria per particelle identiche, con la stessa energia iniziale e nello stesso materiale, il range dovrebbe essere uguale; ma ciò non è vero, a causa delle fluttuazioni statistiche, dovute al fatto che ogni particella non subisce lo stesso numero di collisioni e quindi l’energia a parità di condizioni iniziali non viene persa alla stesso modo, a causa di ciò si ha una distribuzione statistica, in prima approssimazione di tipo gaussiano, del range attorno ad un certo valore medio. Questo fenomeno è conosciuto come straggling.

Sperimentalmente questa quantità può essere calcolata facendo passare un fascio di particelle della stessa energia attraverso diversi spessori di uno stesso materiale, in modo da vedere come varia il rapporto tra le particelle trasmesse e le particelle incidenti. Un’idea dell’andamento di una curva ottenuta con tale sistema è data nel grafico sottostante:
Come è evidenziato in Figura 2.3, il valore per cui la trasmissione si riduce al 50% è conosciuto come range medio; esso corrisponde appunto alla distanza in cui la metà delle particelle del fascio vengono assorbite. Più comunemente si è interessati a conoscere lo spessore necessario per fermare quasi tutte le particelle, per questo, come valore di range viene preso il punto di intersezione della tangente condotta dal punto della curva corrispondente al range medio con l’asse delle distanze, tale valore prende il nome di range estrapolato. Dalla differenza tra il percorso medio e il percorso estrapolato si ottiene il valore dello straggling. Un modo approssimato per calcolare il range di una particella carica pesante è semplicemente assumere che la particella perda la propria energia continuamente con un rate determinato dallo stopping power e che siano trascurabili le deflessioni angolari dovute a multipli scattering coulombiani. Questo approccio è chiamato continous slowing down approximation (csda) range ed è espresso come

\[R_{csda} = \frac{E_{\text{max}}}{\int_0^{E_{\text{max}}} \left(\frac{dE}{dx} \right)^{-1} dE} \]

La formula 2.3, come detto non tiene conto degli effetti di scattering Coulombiano; ma, poiché per particelle cariche pesanti tali effetti sono molto piccoli, possiamo considerarla una buona approssimazione. Ad energie superiori a pochi MeV il valore di csda range calcolato è molto simile al range medio percorso da una particella carica prima di arrestarsi.
L’unità di misura con cui vengono spesso dati i range è g/cm²; in tale misura è considerato il materiale su cui la particella incide, infatti, tale unità si ricava dal prodotto tra la densità del materiale e la distanza percorsa dalla particella.

2.1.4 Interazione con la materia di particelle cariche leggere
Nel caso di elettroni e positroni le collisioni anelastiche sono le principali responsabili delle cessioni di energia soltanto ad energia di modesta entità. Infatti, come vedremo, a causa della loro piccola massa, per essi diventano di notevole importanza i processi di perdita di energia per bremsstrahlung già ad energie di pochi MeV.

![Figura 2.4 - Perdita di energia per ionizzazione (linea punteggiata), per bremsstrahlung (linea tratteggiata) e totale (linea continua) nel tungsteno.](image)

Questi tipi di particelle, a causa della loro massa relativamente piccola, quando attraversano la materia, interagiscono con essa in modo non del tutto simile alle particelle cariche pesanti. Infatti, poiché le collisioni avvengono con altri elettroni, aventi la stessa massa, si avrà una grande perdita di energia e una forte deflessione rispetto alla direzione di incidenza per ogni interazione. Ed inoltre, l’elettrone o il positrone possono interagire con il campo elettrico di un nucleo ed emettere radiazioni elettromagnetiche per bremsstrahlung. Per energie di pochi MeV il processo di bremsstrahlung è poco importante; ma già per energie dell’ordine delle decine di MeV diventa confrontabile con la ionizzazione. Per energie sopra la così detta energia critica la perdita di energia è quasi esclusivamente dovuta ad emissione per bremsstrahlung (vedi Figura 2.4).

In generale, il potere frenante massico di elettroni e positroni può essere espresso dalla somma di due termini: uno relativo alla perdita di energia per collisione, che varia con il
logaritmo dell’energia ed è proporzionale allo \(Z \) del materiale, e l’altro per irraggiamento, che varia con l’energia ed è proporzionale a \(Z^2 \):

\[
S_{\text{tot}} = \frac{1}{\rho} \left(\frac{dE}{dx} \right)_{\text{tot}} = \frac{1}{\rho} \left(\frac{dE}{dx} \right)_{\text{col}} + \frac{1}{\rho} \left(\frac{dE}{dx} \right)_{\text{rad}}
\]

La dipendenza del secondo termine dall’energia giustifica la rapida crescita delle perdite di energia per irraggiamento che sovrasta quelle dovute alle collisioni, che dipendendo dal logaritmo di \(E \) all’aumentare dell’energia rimangono pressoché costanti.

A causa delle forti deflessioni accennate in precedenza si ha che il percorso di un elettrone o di un positrone risulta molto complesso e non è così ben definito come nel caso delle particelle cariche pesanti. La nozione di percorso sembra quindi piuttosto discutibile, nonostante ciò si da una definizione di range estrapolato come la distanza identificata nell’asse delle ascisse dal prolungamento della parte rettilinea della curva di assorbimento.

2.1.5 Radiazioni indirettamente ionizzanti

Le radiazioni indirettamente ionizzanti determinano la ionizzazione della materia attraverso processi indiretti. Di questo tipo di radiazioni fanno parte i neutroni, i raggi X e i raggi \(\gamma \).

I neutroni interagiscono con la materia per collisione diretta con i nuclei atomici o per cattura neutronica da parte dell’atomo. Tali interazioni dipendono fortemente dall’energia del neutrone, dalla densità atomica e dalle masse degli atomi interessati; questi sono eventi rari per cui i neutroni possono penetrare profondamente nella materia.

I raggi X e \(\gamma \) sono radiazioni elettromagnetiche capaci di produrre ionizzazioni interagendo con la materia per mezzo di tre fondamentali processi: l’effetto fotoelettrico, la diffusione Compton e la produzione di coppie. Tutti e tre i processi non generano un degradamento della sua energia ma producono l’assorbimento totale del fotone e quindi determinano una riduzione di intensità del fascio. Tale attenuazione segue una legge del tipo esponenziale \(I(x) = I_0 e^{-\mu x} \), dove \(I_0 \) rappresenta l’intensità iniziale del fascio, \(x \) lo spessore attraversato e \(\mu \) il coefficiente di assorbimento.

L’effetto fotoelettrico predomina ad energie inferiori ai 200 keV. In questo caso il fotone interagisce con un elettrone legato e viene totalmente assorbito; l’energia del fotone viene usata, in parte, per liberare l’elettrone e, in parte, per permettergli di fuoriuscire dall’atomo con una energia cinetica definita dalla seguente formula:
\[E_e = h\nu - E_b \] \hspace{1cm} \text{(2.5)}

dove \(E_e \) è l’energia cinetica dell’elettrone incidente, \(h\nu \) è l’energia del fotone incidente e \(E_b \) è l’energia di legame dell’elettrone atomico.

La diffusione Compton si manifesta in maniera predominante ad energie comprese tra 200 keV e pochi MeV. Il processo consiste nell’interazione tra il fotone incidente e gli elettroni più esterni dell’atomo, i quali presentano una bassa energia di legame e possono considerarsi come liberi. Questo è valido soprattutto per quegli elementi a basso numero atomico, nei quali l’energia di legame è molto bassa e alla volte anche minore di 1 keV. Se l’energia del fotone è dell’ordine di grandezza dei MeV, anche gli elettroni dell’orbita K (che è l’orbita più vicina al nucleo di un atomo e che ha la maggior energia di legame \(E_b \)) di elementi pesanti, come per esempio il piombo (\(E_b = 88 \) keV), possono essere considerati come elettroni liberi. Nel processo, quindi, l’elettrone si allontana dall’atomo con una certa energia cinetica \(E_c \) e un fotone viene diffuso con un certo angolo rispetto alla direzione di incidenza del fotone di partenza e con un’energia \(h\nu_2 \) inferiore ad \(h\nu_1 \), tale che:

\[h\nu_1 = h\nu_2 + E_c. \] \hspace{1cm} \text{(2.6)}

Il fotone diffuso può interagire ulteriormente con la materia o per effetto Compton o per effetto fotoelettrico in rapporto alla sua energia residua.
La produzione di coppie è un fenomeno che avviene in maniera prevalente rispetto ai precedenti quando l’energia del fotone è superiore a qualche MeV e consiste nella trasformazione di un fotone in un coppia elettrone-positrone. In particolare, tale processo possiede una energia di soglia al di sotto della quale tale processo non può avvenire, pari a 1.022 MeV, che corrisponde alla somma delle masse a riposo dell’elettrone e del positrone.

2.2 Elementi di radiobiologia

La radiazione ionizzante quando incontra la materia biologica la ionizza cedendole energia, inducendo modificazioni transitorie o permanenti delle caratteristiche chimiche e fisiche. Possono subire l’azione della radiazione tutti i componenti cellulari necessari alla vita cellulare, nonostante questo si è interessati soprattutto ai danni che può subire il DNA in quanto è esso che determina principalmente la sopravvivenza o la morte della cellula. Ci sono due principali meccanismi di danneggiamento del DNA:

1. Diretto: il DNA subisce direttamente gli effetti ionizzanti o eccitanti della radiazione
2. Indiretto: le alterazioni sono dovute ai radicali liberi prodotti dall’azione della radiazione, principalmente sull’acqua contenuta nel mezzo cellulare circostante, che poi in un secondo momento attaccheranno il DNA.
Naturalmente a parità di radiazione i danni subiti dalle diverse specie cellulari non sono gli stessi, ma dipendono dalla “radiosensibilità specifica”. La legge di Bergonié e Tribondeau afferma che tale radiosensibilità è direttamente proporzionale all’attività mitotica e inversamente proporzionale al grado di differenziazione. Tale definizione permette di distinguere tra popolazioni cellulari radiosensibili, che rispondono prontamente alla radiazione inviata, e radioresistenti, che presentano manifestazioni radiopatologiche tardive, perlopiù, per dosi di ordine terapeutico oncologico.

<table>
<thead>
<tr>
<th>Radiosensibili</th>
<th>Radioresistenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cute</td>
<td>Sistema nervoso</td>
</tr>
<tr>
<td>Midollo osseo</td>
<td>Muscoli</td>
</tr>
<tr>
<td>Gonadi</td>
<td>Renì e fegato</td>
</tr>
</tbody>
</table>

Tabella 2.1 – Esempi di popolazioni cellulari radiosensibili e radioresistenti.

Il danno terminale avviene quando i filamenti del DNA sono talmente danneggiati che non possono essere riparati nel periodo di riparazione del ciclo cellulare e a questo punto la cellula andrà in apoptosi. Solitamente la rottura di un singolo filamento (SSB) da solo non è sufficiente per far morire la cellula, ma se si ha la rottura di un doppio filamento (DSB) all’allora l’apoptosi è molto più ricorrente. Per descrivere la relazione tra la frazione di cellule irradiate che mantengono la loro capacità di riproduzione e la dose assorbita, vengono utilizzate le curve di sopravvivenza cellulare.

Figura 2.9 – Esempio di curve di sopravvivenza relative a radiazioni ionizzanti a basso e alto LET.

Queste curve presentano un andamento esponenziale decrescente in funzione della dose assorbita, D, esprimibile attraverso la seguente formula:

$$S(D) = e^{-(\alpha D + \beta D^2)}$$ \hspace{1cm} 2.7
Dove il termine α si riferisce ai danni letali, ossia quelli non riparabili, mentre quello β a quelli riparabili. La prima parte della curva viene detta spalla e dalla sua ampiezza si deduce la capacità di riparazione intracellulare del danno sublelale, ovvero quel danno riparabile dai meccanismi enzimatici intracellulari.

2.2.1 L.E.T. e R.B.E.
I diversi tipi di radiazione differiscono tra di loro per l’efficacia con cui recano danno al tessuto vivente. La quantificazione di questo effetto è eseguita attraverso il concetto di efficacia biologica relativa (RBE) che non è altro che il rapporto fra l’effetto biologico di una data dose di radiazioni e quello della stessa dose di una radiazione di riferimento (raggi X di 250 keV).

Figura 2.10 – Andamento dell’RBE in funzione del L.E.T.

L’efficacia biologica relativa come si nota dalla Figura 2.10 è funzione di una grandezza denominata linear energy transfer (LET). Il LET, detto anche trasferimento lineare d’energia o potere frenante per collisione lineare ristretto, è definito come:

\[
L_\Delta = \left(\frac{dE}{dl} \right)_\Delta
\]

2.8

dove dE rappresenta l’energia ceduta localmente per collisioni da una particella carica lungo un segmento di lunghezza dl, avendo considerato in dE solo le collisioni che comportano un trasferimento di energia inferiore a Δ. \(L_\Delta \) è espresso in keV/µm. Se invece non si impone alcun limite sull’energia si ottiene \(L_\infty \) e in base a quest’ultima quantità si distinguono le particelle ad alto LET e le particelle a basso LET. Inoltre, questa grandezza dipende dalla velocità e dalla carica della particella.
Figura 2.11 – Andamento RBE in funzione del LET [11]

Tabella 2.2 – Esempi di particelle ad alto o basso LET

<table>
<thead>
<tr>
<th>Tipi di particelle</th>
<th>Energia (MeV)</th>
<th>L.E.T. (keV/µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elettroni</td>
<td>0.001</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>60Co</td>
<td>1.25</td>
<td>0.2±2</td>
</tr>
<tr>
<td>Protoni</td>
<td>0.1</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabella 2.3 - L.E.T. di alcune particelle usate in dosimetria al variare dell’energia.

Dalla Figura 2.11 si nota come le particelle ad alto LET siano, a parità di dose assorbita, più dannose rispetto a quelle a basso LET, ciò è dovuto al fatto che le prime determinano un numero di ionizzazioni e una distruzione lungo il loro percorso maggiore delle seconde. Questo, però, non è sempre valido infatti superati certi valori di LET si hanno elevate densità di ionizzazione e nel mezzo viene ceduta una quantità di energia maggiore di quella necessaria per produrre l’effetto e ciò provoca una diminuzione dell’RBE.

<table>
<thead>
<tr>
<th>Tipo di Radiazione</th>
<th>RBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raggi X (250 keV)</td>
<td>1.0</td>
</tr>
<tr>
<td>Raggi X (MeV)</td>
<td>1.0</td>
</tr>
<tr>
<td>elettroni</td>
<td>1.0</td>
</tr>
<tr>
<td>protoni</td>
<td>1.1 – 1.5*</td>
</tr>
<tr>
<td>Ioni C6+</td>
<td>1.5 – 5*</td>
</tr>
<tr>
<td>Neutroni veloci</td>
<td>4 – 5*</td>
</tr>
</tbody>
</table>

Tabella 2.4 – Valori tipici per differenti tipi di radiazioni. *Il valore più alto ricorre alla fine del range della particella dove il LET cresce.
2.3 Dosimetria

La dosimetria è una branca della fisica che si occupa del calcolo della dose assorbita dalla materia quando sottoposta sia alle radiazioni ionizzanti che a quelle non ionizzanti ma qui di seguito sarà trattato solo il caso delle radiazioni ionizzanti. Allo scopo di descrivere gli effetti, che intervengono quando questo tipo di radiazione incide sulla materia, sono state definite varie grandezze, dette dosimetriche, delle quali saranno trattate in dettaglio solo le principali e solo dopo aver introdotto le grandezze di campo.

2.3.1 Grandezze di campo

Una grandezza fisica si dice di campo se:

- è definita in funzione dei punti di una zona di spazio fisico;
- i suoi valori dipendono unicamente dalla posizione del punto;
- i suoi valori variano con continuità (senza salti).

Alcune fra le grandezze di campo più conosciute sono le seguenti:

Fluenza di particelle: è il rapporto fra il numero dN di particelle che attraversano una sfera la cui sezione massima ha area dA centrata nel punto di interesse. Nel caso di fascio unidirezionale, dA è semplicemente un’area ortogonale al fascio; la fluenza di particelle si indica col simbolo Φ e si ha:

$$\Phi = \frac{dN}{dA} [m^{-2}]$$ \hspace{1cm} 2.9

Intensità di fluenza di particelle: è semplicemente la derivata rispetto al tempo della fluenza di particelle, si indica col simbolo ϕ e si ha:

$$\phi = \frac{d\Phi}{dt} [m^{-2}s^{-1}]$$ \hspace{1cm} 2.10

Fluenza energetica: è il prodotto della fluenza di particelle per la loro energia, si indica col simbolo Ψ e si ha:

$$\Psi = \Phi E \ [J \ m^{-2}]$$ \hspace{1cm} 2.11

Intensità di fluenza energetica: è la derivata rispetto al tempo della fluenza energetica, si indica col simbolo ψ e si ha:
\[\psi = \phi E \quad [W \, m^{-2}] \] 2.12

2.3.2 Grandezze dosimetriche

2.3.2.1 Esposizione

L’esposizione, indicata con simbolo \(X \), è la grandezza che esprime la capacità di ionizzare le molecole d’aria da parte della radiazione incidente: rappresenta la misura della carica elettrica prodotta (correlata al numero di ioni prodotti) per unità di massa d’aria e fu introdotta per descrivere la capacità dei raggi X di produrre ionizzazione in aria.

\[X = \frac{dQ}{dm} \] 2.13

dove \(dQ \) è il valore assoluto della carica totale degli ioni di un solo segno prodotti in aria quando tutti gli elettroni liberati dai fotoni nell’elemento di massa \(dm \) sono completamente fermi in aria. Inoltre nel conteggio di \(Q \) non bisogna considerare le ionizzazioni prodotte in seguito all’assorbimento della radiazione di frenamento emessa dagli elettroni secondari liberati nel volume d’interesse. Nel S.I. si misura in Roentgen [R] che è pari a \(2.58 \cdot 10^{-4} [C/kg] \).

Il rate di esposizione è di conseguenza definito come:

\[\dot{X} = \frac{dX}{dt} \] 2.14

e si esprime, nel S.I., in [A/kg].

Infine quando si effettuano misure di esposizione è sempre necessario che nel volume di misura siano verificate le condizioni di equilibrio delle particelle cariche\(^6\). Siccome tali condizioni si riescono a realizzare solo con fotoni di energia non superiore a 3 MeV, l’esposizione è una grandezza utilizzabile in un ambito assai ristretto: solo con la radiazione X e solo entro l’energia indicata precedentemente.

\(^6\) Secondo il rapporto ICRU 33, si parla di Equilibrio di particelle cariche, quando il numero, l’energia e la direzione delle particelle cariche, sia primarie che secondarie, si mantengono costanti nel volume d’interesse.
2.3.2.2 Dose Assorbita e rateo di dose

La grandezza dosimetrica principale è la Dose Assorbita; essa rappresenta la quantità di energia assorbita per unità di massa della materia attraversata ed è definita come:

\[D = \frac{d\varepsilon}{dm} \quad 2.15 \]

Dove \(d\varepsilon \) rappresenta il valor medio dell’energia rilasciata nella materia in un volume infinitesimo \(dm \). Nel S.I. la dose assorbita si esprime in Gray, simbolo [Gy], dove 1 Gy = 1 J / 1 kg. Una grandezza correlata alla precedente è il dose rate o rateo di dose, \(\dot{D} \), definito come:

\[\dot{D} = \frac{dD}{dt} \quad 2.16 \]

e si esprime in gray al secondo, [Gy/s]. Spesso per rendere l’informazione sulla dose più completa la si accompagna indicando il tipo di materiale in cui è stata assorbita e il tipo di radiazione che l’ha generata.

2.3.2.3 K.E.R.M.A.

In generale un processo di trasferimento di energia alla materia, da parte di una radiazione indirettamente ionizzante si compone di due fasi: la prima è caratterizzata della messa in moto dei secondari carichi e la seconda è caratterizzata, invece, dalla deposizione di energia da parte dei secondari attraverso le collisioni che avvengono nella materia.

Il K.E.R.M.A., acronimo di kinetic energy released to the matter, descrive solo la prima fase del trasferimento di energia ed è definito come:

\[K = \frac{dE_{tr}}{dm} \quad 2.17 \]

dove \(dE_{tr} \) è la somma delle energie cinetiche iniziali di tutte le particelle cariche prodotte da particelle indirettamente ionizzanti in un certo volume di massa \(dm \).

Anche in questo caso si definisce il rate di kerma:

\[\dot{K} = \frac{dK}{dt} \quad 2.18 \]

Queste due grandezze hanno le stesse unità di misura rispettivamente della dose assorbita e del rate di dose assorbita.
2.3.3 Misura della dose assorbita

Quando si utilizzano fasci convenzionali, le misure di dose assorbita si eseguono, secondo i protocolli dosimetrici, con camere a ionizzazione in fantocci ad acqua poiché possiedono elevata sensibilità di risposta ed, inoltre, i processi di interazione coinvolti sono ben conosciuti. Quindi in ogni centro in cui si effettuano misure dosimetriche è presente una camera a ionizzazione, precedentemente calibrata in un laboratorio di riferimento, con la quale si eseguono misure di dose assoluta e che viene presa come riferimento per tutti gli altri dosimetri (detti perciò dosimetri relativi). Quando, invece, si dovrà fare una dosimetria di fasci di ioni laser – driven, a causa dell’elevatissima intensità di questi fasci, non sarà più possibile utilizzare le camere a ionizzazione per la misura della dose assorbita ma sarà necessario introdurre un diverso tipo di dosimetro che riesca a lavorare anche a questi regimi.

2.3.3.1 Il Principio di Bragg - Gray

La determinazione della dose assorbita in un punto di un mezzo materiale irradiato può essere ottenuta tramite la misura della ionizzazione prodotta in una piccola cavità riempita di un materiale G sensibile alla dose, posta attorno al punto scelto. La conversione della ionizzazione all’interno della cavità in dose assorbita nel mezzo è possibile grazie al principio di Bragg-Gray. Questo principio è alla base di molte misure eseguite normalmente nella dosimetria di fasci radioterapici.

Intuitivamente si osserva che tanto più piccola è la cavità praticata intorno al punto nel quale si vuole effettuare la misura, tanto minore è la perturbazione apportata al campo di radiazione e tanto più vicini saranno quindi i valori della dose \(D^G \) misurata nella cavità e della dose \(D^M \) al mezzo.

L’esponente \(G \) nel simbolo \(D^G \) ha origine storica, perché il caso più comunemente considerato è quello di una cavità riempita di gas [12]; per questo motivo le considerazioni che ora saranno svolte si riferiranno ad una cavità contenente gas, ma potranno essere estese anche nel caso in cui la cavità fosse riempita con materiali, anche solidi, con differente composizione chimica e densità.

Si comincia dunque considerando una cavità “piccola”. Si definisce tale, una cavità per la quale sono verificate entrambe le seguenti ipotesi:

I. Le sue dimensioni sono così modeste rispetto al percorso dei secondari carichi messi in moto nel mezzo, che questi perdono in essa, attraversandola, soltanto una piccola frazione della loro energia;

II. Le sue dimensioni sono sufficientemente modeste rispetto al libero cammino medio delle particelle primarie da poter trascurare le interazioni che questi subiscono nella cavità stessa.

In queste condizioni, la presenza della cavità non altera la fluenza degli elettroni primari e secondari. Detta allora \(E_G \) l’energia assorbita per unità di massa del gas nella cavità, espressa in eV/Kg, si ha:

\[
E_G = J_G \cdot \frac{\overline{W}}{e}
\]

dove \(J_G \) è la ionizzazione per unità di massa nel gas [C/Kg], \(\overline{W} \) è l’energia media spesa per creare una coppia di ioni nel gas (circa 34 eV se il gas è l’aria) ed \(e \) è la carica dell’elettrone.

Se la cavità fosse sostituita da una uguale quantità del materiale considerato, l’energia \(E_M \) che sarebbe assorbita per unità di massa del mezzo sarebbe:

\[
E_M = S_{M,G} \cdot E_G
\]

dove \(S_{M,G} \) rappresenta il rapporto del potere frenante massico collisionali del mezzo con quello del gas mediati sullo spettro degli elettroni che attraversano la cavità.
Ne segue che la dose assorbita, \(D_M \), dal mezzo nel punto dove è situata la cavità può essere determinata dalla ionizzazione nel gas attraverso il principio di Bragg-Gray, espresso dalla relazione:

\[
D_M = J_G \cdot \left(\frac{\overline{W}}{e} \right) \cdot S_{M,G} \cdot \left(\frac{eV}{Kg} \right) \cdot \left(1.6 \cdot 10^{-19} \frac{J}{eV} \right)
\]

Il principio di Bragg-Gray può essere applicato non solo a raggi X o gamma, per i quali sono definite le misure di esposizione, ma anche per fotoni di energia più elevata a 3 MeV, per fasci di elettroni e di particelle cariche pesanti. In tutti i casi, le misure di dose assorbita vengono normalmente effettuate usando camere a ionizzazione riempite di aria e facendo uso della stessa teoria.

In ogni caso, affinché la relazione di Bragg-Gray possa essere applicata devono essere rispettate alcune condizioni:

I. Il volume della cavità, come detto, deve essere sufficientemente piccolo da poter trascurare l’effetto di perturbazione prodotto nel punto di misura sulla fluenza e sullo spettro di energia degli elettroni;

II. La parete della camera deve essere costituita da un materiale avente lo stesso numero atomico effettivo e la stessa densità del mezzo oppure deve essere tanto sottile da rendere irrillevanti le interazioni dei fotoni nella parete stessa;

III. L’energia dei secondari carichi deve essere depositata dove essi sono stati generati.

Queste condizioni spesso sono difficili da soddisfare e ciò è dovuto principalmente alle difficoltà che si incontrano quando si realizzano rivelatori sufficientemente piccoli e con sensibilità adeguata. Perciò, spesso si ricorre a protocolli dosimetrici attraverso i quali si possono ottenere dei fattori di correzione che tengano conto delle approssimazioni effettuate.

Spesso, inoltre, risulta difficile stimare la quantità di gas presente nella cavità e ciò rende impossibile il calcolo della ionizzazione per unità di massa provocata dalla radiazione incidente. Quindi, dato che in campo dosimetrico ormai è diventata pratica comune l’uso di camere a ionizzazione è necessario tarare queste camere insieme ad un elettrometro presso un Laboratorio di Riferimento che fornisca un fattore di calibrazione in termini di
dose in aria, fattore indicato con \(N_D \) nel protocollo IAEA (International Atomic Energy Agency) e con \(N_{\text{gas}} \) nel protocollo AAPM (American Association of Physicist in Medicine), ricavato per il \(^{60}\)Co e supposto poi valido a tutte le energie.

Il fattore \(N_D \) non è invece fornito per la camera a facce piane e parallele ed è necessario ricavarlo per interconfronto con la cilindrica.

In definitiva è possibile affermare che il successo o il fallimento della radioterapia possono dipendere dall’accuratezza con cui si procede alla determinazione della dose erogata al tessuto.

2.3.3.2 Camere a ionizzazione

Le camere a ionizzazione, come anticipato nel paragrafo precedente, sono diventate un punto di riferimento in campo dosimetrico per quel che concerne la misura di dose. Le misure possono essere di due tipi: assolute o relative e si parlerà di dosimetria e di dosimetre assoluti, nel primo caso, e di dosimetria e di dosimetre relativi, nel secondo. I primi permettono il calcolo diretto della dose assorbita; con i secondi, invece, è possibile risalire alla misura della dose solo dopo un’opportuna calibrazione rispetto a dosimetre assoluti. Con queste camere è possibile misurare, attraverso il metodo ionimetrico, la ionizzazione prodotta dalla radiazione nel gas, solitamente aria.

Tale metodo si basa sul fatto che l’energia necessaria per produrre una coppia di ioni in un gas (contenuto nella cavità di una camera a ionizzazione) è una costante e non dipende, in buona approssimazione, dall’energia della radiazione incidente. Lo schema di una camera a ionizzazione a facce piane e parallele è illustrato in Figura 2.13. Quando la radiazione entra nel volume sensibile della camera ionizza il gas producendo ioni positivi e negativi. Un fattore importante che può inficiare sulla misura è la tensione di polarizzazione applicata agli elettrodi la quale determina il campo elettrico che permette la raccolta degli ioni. Infatti l’efficienza di raccolta dipende in maniera proporzionale dalla tensione di polarizzazione applicata ed in particolare aumenta all’aumentare di questa fino a che non si raggiunge una regione di saturazione. In questa regione, detta di saturazione, è possibile affermare che la raccolta delle cariche prodotte è quasi indipendente dal campo elettrico e che, di conseguenza, l’efficienza di raccolta è unitaria e quindi non si più verifica il fenomeno della ricombinazione. Inoltre la corrente in uscita avrà un’intensità proporzionale all’intensità
della radiazione e sarà dipendente dalla tensione di raccolta applicata. Usualmente, si preferisce lavorare nella regione in cui si ha la saturazione per rendere il valore della corrente in uscita indipendente dalle piccole fluttuazioni che si verificano attorno al valore di tensione fissato. Le pareti intorno alla cavità devono essere sottili in modo da non venire in contrasto con la teoria di Bragg-Gray; le camere poi possono essere realizzate con varie geometrie a seconda dell’applicazione per la quale devono essere usate.

Figura 2.13 - Componenti fondamentali di una camera a ionizzazione e corrispondenti caratteristiche corrente-tensione

Le caratteristiche principali richieste ad una camera a ionizzazione per la dosimetria sono:
1) corrente di fuga non superiore ad una frazione di picoAmpere; 2) efficienza di raccolta maggiore del 99%; 3) stabilità nel tempo e indipendenza della risposta dall’energia del fascio.

2.3.3.3 Camere a ionizzazione cilindriche

Le camere a ionizzazione più diffuse sono quelle di forma cilindrica. Sono costituite da cavità piene di aria con pareti di numero atomico effettivo circa uguale a quello dell’aria ($\bar{Z} = 7.64$), solitamente bakelite, perspex o grafite. Se la parete è fatta di un materiale conduttore è essa stessa un elettrodo, mentre l’altro elettrodo è rappresentato da un conduttore sottile, spesso di alluminio, situato al centro della cavità; quest’ultimo è chiamato elettrodo di raccolta.

Un’altra importante caratteristica delle camere a ionizzazione cilindriche è il cosiddetto elettrodo di guardia che circonda l’elettrodo collettore ed è connesso ad un potenziale di riferimento. L’anello di guardia, o anche elettrodo ausiliario, riduce le distorsioni del campo elettrico ai confini della regione attiva e la caduta di potenziale che ha luogo nel materiale...
isolante, limitando di fatto eventuali correnti di fuga e definisce il volume di raccolta della carica liberata dalla ionizzazione. L’anello di guardia deve avere dimensioni sufficientemente grandi da minimizzare gli effetti di perturbazione della fluenza.

Le camere cilindriche sono pratiche perché robuste ed utilizzabili in acqua, grazie ad un rivestimento adatto. Essendo inoltre il loro volume sensibile generalmente compreso tra 0.1 cc ed 1 cc, esse possono essere utilizzate per elevati valori di dose, quali quelli incontrati in radioterapia, garantendo altresì un’elevata risoluzione spaziale [13].

2.3.3.4 Camere a ionizzazione a facce piane parallele

La camera a ionizzazione a facce piane e parallele è il tipo di camera che meglio si presta ad essere utilizzata all’interno di fantocci. Dove, per fantoccio si intende un materiale che presenta delle caratteristiche simili a quelle del materiale da irraggiare e che abbia approssimativamente le sue stesse dimensioni. Solitamente, in ambito dosimetro è tessuto equivalente, è modellato in maniera tale da assomigliare alla regione del corpo da trattare e presenta la possibilità di inserire facilmente, in diversi punti di esso, un dosimetro per la misura della grandezza dosimetrica di interesse [14].

Questi tipi di camere piatte hanno una geometria che perturba il meno possibile la fluenza del fascio, grazie ad un volume di aria sensibile nella direzione del fascio minimo ed ai materiali con basso Z di cui sono costituite le sue pareti. La finestra d’ingresso è sottile e la cavità è racchiusa tra due elettrodi circolari, i quali si devono disporre con la superficie lungo un piano ortogonale al fascio. Infatti, un inconveniente delle camere piatte è la possibile dipendenza della loro risposta dall’angolo di incidenza del fascio, soprattutto se hanno un diametro elevato. A tale proposito, le dimensioni ideali degli elettrodi collettori sono 20 mm di diametro con una distanza tra essi di 2 mm al massimo. Camere di questo tipo possono dunque essere utilizzate sia per esplorare la distribuzione di dose in un piano ortogonale al fascio, sia per effettuare la calibrazione del fascio e prendono il nome di camere Markus.
2.3.3.5 Camera MARKUS ADVANCED

I più recenti modelli di camere a ionizzazione a facce piane e parallele sono le camere Markus Advanced, le quali rappresentano un’ulteriore evoluzione rispetto alle camere Markus e sono progettate appositamente per eseguire dosimetrie relative ed assolute in fantocci ad acqua o di materiale solido rendendo trascurabili gli effetti perturbativi.

In generale, una misura di dose, tramite la ionizzazione, è effettuata con un elettrometro ed una camera a ionizzazione di geometria opportuna a seconda del tipo di fascio analizzato.

In particolare, ai LNS, nell’ambito del progetto CATANA, viene utilizzata una camera piatta di tipo MARKUS ADVANCED Mod. 34045 (Figura 2.15), connessa all’elettrometro PTW-UNIDOS, come rivelatore di riferimento per i rilievi dosimetrici.

La camera MARKUS ADVANCED è una camera a ionizzazione ad elettrodi piani e paralleli con interspazio elettrodico di 0.87 mm riempito di aria, può essere considerata come il rivelatore di riferimento per misure su fasci di protoni, come ampiamente riportato in letteratura [15]. La camera è considerata tale per via dell’esatta definizione del punto
effettivo di misura che si colloca sulla superficie interna della finestra d’ingresso, per il volume di raccolta estremamente limitato (0.02 cm3) e per la presenza di un anello di guardia che minimizza gli effetti di perturbazione della fluenza di particelle nel mezzo irradiato [16].

2.3.3.6 Dosimetria assoluta dei fasci di protoni

2.3.3.7 Determinazione della dose assorbita in un fascio di protoni
L’ultimo protocollo dosimetrico, citato nel paragrafo precedente fornisce, le informazioni necessarie a calcolare la dose assorbita in acqua D_w nel punto di riferimento7 di una camera a ionizzazione MARKUS ADVANCED. In particolare, attraverso l’estensione del formalismo anche a fasci di protoni, attraverso la seguente equazione:

$$D_w = Q \cdot \varphi_{TP} \cdot k_{q,q_0} \cdot N_{D,w}$$ \hspace{1cm} 2.22

dove q e q_0 sono, rispettivamente, i fattori di qualità del fascio di protoni e del fascio di calibrazione della camera; Q è il valore letto dalla camera MARKUS posizionata al centro dello spread-out Bragg peak (SOBP); φ_{TP} è il fattore di correzione; $N_{D,w}$ è il fattore di calibrazione (Gy/C) della dose assorbita dall’aria nella camera fornito dalla PTW Freiburg è pari a 1.369 Gy/nC e k_{q,q_0} è un fattore specifico della camera e viene utilizzato quando si utilizza un fascio che mostra un fattore di qualità differente rispetto a quello di calibrazione.

7 Punto scelto in accordo alle raccomandazioni internazionali, in base alla necessità di operare in una zona di gradiente minimo
Questo fattore di correzione è definito come il rapporto tra il fattore di calibrazione ottenuto con un fascio con fattore di qualità q e quello ottenuto con un fattore di qualità q_0:

$$k_{q,q_0} = \frac{N_{D,wq}}{N_{D,wq_0}}$$ \hspace{1cm} (2.23)

dove solitamente come radiazione di riferimento si utilizza il 60Co.

Quando non si hanno a disposizione dati sperimentali ed è possibile applicare la teoria di Bragg-Gray, il valore di questo fattore di correzione può essere calcolato teoricamente attraverso la seguente formula valida per ogni tipo di fascio e per ogni energia:

$$k_{q,q_0} = \left[\frac{(W_{air})_q}{(W_{air})_{q_0}}\right] \cdot \left(\frac{S_{w,air}}{S_{w,air}}\right)^q_{q_0} \cdot \frac{p_q}{p_{q_0}}$$ \hspace{1cm} (2.24)

dove $\left[\frac{(W_{air})_q}{(W_{air})_{q_0}}\right]$ rappresenta il rapporto delle energie medie di ionizzazione in aria, rispettivamente per il fascio di protoni e per il fascio di calibrazione; $\left(\frac{S_{w,air}}{S_{w,air}}\right)^q_{q_0}$ è il rapporto dei poteri frenanti massici acqua-aria dei protoni di qualità q e q_0; infine, p_q tiene conto del fatto che la camera a ionizzazione non è un rivelatore ideale di Bragg-Gray, ma viene solitamente assunto unitario per fasci di protoni [21], principalmente a causa del corto range degli elettroni secondari prodotti dalle interazioni del fascio primario di protoni nel fantoccio e nelle pareti della camera.

Ad oggi non esiste un protocollo standard per quanto riguarda l’absorbed dose to water D_w per fasci di protoni. Quindi tutti i valori k_{q,q_0} contenuti nel TRS-398 – Code of Practice for proton beams prendono come riferimento la radiazione gamma del 60Co con il corrispettivo fattore di qualità q_0.

Tabella 2.6 – Elenco dei fattori necessari al calcolo del k_{q,q_0} e dei relativi errori dichiarati nel TRS-398.

La procedura seguita al LNS per la calibrazione della camera MARKUS ADVANCED sarà descritta in seguito nel paragrafo 4.3.1, è però opportuno soffermarsi adesso su Q in
quanto questo valore, come detto, deve essere corretto in virtù del fatto che la camera a ionizzazione viene solitamente usata in condizioni diverse da quelle standard per le quali viene calcolato il fattore di calibrazione \(N_{D,w} \).

Ai fini della misura, le correzioni apportate sono:

- \(\varphi_{T,P} \): fattore di correzione dovuto alla differenza tra pressione e temperatura durante la misura e pressione e temperatura a cui viene fornito il fattore di calibrazione (293.2 K, 1013.2 hPa), poiché influenzano la massa d’aria all’interno della camera a ionizzazione e quindi la quantità di coppie di ionizzazione all’interno di essa. Questo fattore è così valutato numericamente:

\[
\varphi_{T,P} = \frac{P_0}{P} \cdot \frac{(273.15 + T)}{(273.15 + T_0)}
\]

2.25

dove \(P \) e \(T \) sono la pressione e la temperatura dell’aria durante la misura e \(P_0 \) e \(T_0 \) sono i valori di riferimento come forniti nel certificato di calibrazione.

- \(\varphi_{\text{hum}} \): fattore di correzione per l’umidità. Converte la carica raccolta nell’aria ambientale (umida) con quella in aria secca per la quale l’esposizione è definita. Può essere usato un valore di 1/0.9975, corrispondente al 50% di umidità o, alternativamente, la camera può essere pulita con aria secca, assumendo così \(f_{\text{hum}} = 1.0 \).

- \(\varphi_{\text{pol}} \): fattore correttivo della polarità. Nel caso di fasci di protoni e \(^{60}\text{Co}\), tale fattore è considerato unitario.

- \(\varphi_{r} \): fattore di ricombinazione. Tiene conto della incompleta efficienza nella raccolta di carica dovuta alla ricombinazione tra ioni ed elettroni. Questo effetto dipende dalla tensione applicata all’elettrodo centrale, dalla geometria della camera, dalla velocità con cui la radiazione produce carica all’interno della camera. Esso può essere assunto unitario per \(^{60}\text{Co}\) per via dei bassi ratei di dose a cui viene calibrata la camera.

Il procedimento appena descritto per la misura della dose attraverso camere a ionizzazione sarà utile anche, come vedremo nei prossimi capitoli, per tarare i film radiocromici, di cui parleremo in dettaglio nel capitolo 3.
CAPITOLO 3 – I FILM RADIOCROMICI
3.1 Introduzione

Tra gli obiettivi principali, che si devono raggiungere nel campo della dosimetria delle radiazioni ionizzanti, vi sono l’acquisizione delle curve di isodose8 e delle curve di dose in profondità9 relative al fascio. Lo scopo è quello di ottenere tutte le informazioni necessarie ad avere un controllo totale delle caratteristiche del fascio: allineamento, simmetria, energia, etc. e nell’ambito delle applicazioni mediche, per poter pianificare nel miglior modo possibile i trattamenti a cui sono sottoposti i pazienti. I rivelatori utilizzati devono quindi rispondere ad alcune caratteristiche importanti:

1. devono essere \textit{tessuto equivalente}; cioè, densità ρ, potenziale di prima ionizzazione I e rapporto medio tra numero atomico e peso atomico $<Z/A>$, devono essere simili a quelli dell’acqua ($\rho = 1$ gr/cm3, $I = 75$ eV e $<Z/A> = 0.55508$ [22]) o a quelli del tessuto muscolare ($\rho = 1.050$ gr/cm3, $I = 74.6$ eV e $<Z/A> = 0.55000$ [22]);
2. devono avere un’alta risoluzione spaziale;
3. devono avere, per quanto è possibile, risposte indipendenti dalle variazioni del LET;
4. devono avere la giusta sensibilità in relazione all’intensità della dose con cui si lavora.

I dosimetri convenzionali come camere a ionizzazione e la maggior parte dei semiconduttori non hanno una risoluzione spaziale adeguata a causa delle dimensioni dell’area sensibile esposta al fascio relativamente grande, di solito dell’ordine del mm2. I dosimetri a termoluminescenza (TLD), anche se di piccole dimensioni (1 mm3), sono comunque poco pratici se utilizzati per costruire curve di distribuzione di dose soprattutto nelle regione di alto gradiente di intensità del fascio; inoltre, il processo di lettura comporta la distruzione dell’informazione da essi contenuti. Oltre a ciò, tali dosimetri non possono essere utilizzati per la caratterizzazione di fasci prodotti tramite acceleratori laser-driven poiché l’altissima intensità dei fasci così prodotti ne provocherebbe una saturazione che renderebbe vana ogni misura.

Tutti questi problemi possono essere evitati se si prende in considerazione l’utilizzo di RCF (RadioChromic Film) in misure di dose. I RCF sono dosimetri relativi, quindi, per ottenere

8 Curve che rappresentano il luogo dei punti nello spazio in cui la dose assorbita assume un valore costante.
9 Curve che rappresentano la distribuzione della dose assorbita in funzione della profondità nel materiale attraversato.
misure assolute di dose devono essere calibrati attraverso un dosimetro assoluto come per esempio una camera a ionizzazione Markus.

L’uso di una camera Markus per la calibrazione dei RCF con fasci che presentano ratei di dose convenzionali prodotti tramite acceleratori convenzionali non preclude il successivo utilizzo dei film radiocromici con fasci prodotti tramite laser. Infatti i film in questione, come dichiarato dalla casa costruttrice e da vari risultati sperimentali [23] [2] possono essere considerati indipendenti dal rateo di dose con una incertezza del 5%.

I film hanno, come vedremo meglio nei paragrafi seguenti, una risoluzione spaziale dell’ordine del μm, sono facili da maneggiare e da un solo film irraggiato si possono ottenere un gran numero di informazioni. In particolare, sono rivelatori 2-D, cioè sono capaci di immagazzinare informazioni sulla distribuzione di dose nel piano. Quest’ultima caratteristica è peculiare dei film radiocromici e li rende più appetibili rispetto ad altri tipi di dosimetri. Infine, le informazioni contenute nei film non vengono perse durante i processi di lettura e possono, quindi, essere conservate per formare un archivio delle misure eseguite. Tuttavia, come si vedrà in seguito, la lettura dipende, in una piccola parte, dal tempo che intercorre tra irraggiamento del film e lettura. La dosimetria con film è, inoltre, il metodo più rapido per ottenere le distribuzioni di dose e le relative informazioni dosimetriche di campi di radiazioni piccoli e dalla forma irregolare [24].

Nei prossimi paragrafi verranno descritte le caratteristiche dei film radiocromici e lo strumento impiegato per la loro lettura. In particolare i due film utilizzati in questo lavoro di tesi sono:

1. Film GafChromico HD-810;
2. Film GafChromico EBT 3.

3.2 Gafchromic® film

Gafchromic® è il nome del marchio di una serie di film radiocromici fabbricati dalla International Specialty Products (ISP) [25]. Questi RCF sono costituiti generalmente da uno strato di poliestere trasparente esterno (strato morto) e da uno o più strati interni di un materiale che reagisce alla radiazione (strato attivo). La caratteristica più importante di questi RCF, che in passato li ha fatti preferire ai film radiografici, è quella che sono dei dispositivi self-developing, cioè lo strato attivo acquista una colorazione nel momento stesso in cui viene esposto a radiazioni ionizzanti. Infatti, differentemente dai film
radiografici, i quali richiedono dei processi chimici di sviluppo per ottenere l’immagine, lo strato attivo dei RCF è formato da monomeri organici che subiscono una polimerizzazione se sottoposti a radiazione ionizzante. Il polimero che si viene a creare fa apparire la regione del RCF più scura ed in particolare la colorazione assunta dipende dal tipo di spettro di assorbimento del polimero stesso. Il grado di ‘annerimento’ viene misurato attraverso la densità ottica del film (optical density (OD)), cioè viene misurata la riduzione di intensità che un fascio luminoso, meglio se monocromatico, subisce quando attraversa il film. La relazione tra la OD e la frazione di luce trasmessa è:

\[OD = \log_{10} \left(\frac{I_0}{I} \right) \] \hspace{1cm} (3.1)

dove \(I_0 \) è l’intensità luminosa prima di attraversare il film e \(I \) è quella dopo aver attraversato il film. In particolare quando si usa una scanner, il valore del pixel di un dato canale RGB o della scala di grigi indica il valore \(I \) mentre il valore massimo di trasmissione, per esempio 65535 per un canale a 16 bit, viene utilizzato come valore di \(I_0 \). Il film radiocromico non è perfettamente trasparente ma presenta anche un’OD intrinseca che viene chiamata densità ottica di \textit{background}. Nelle misure effettuate si è utilizzata una grandezza denominata densità ottica netta, \textit{netOD}, che si ottiene semplicemente attraverso la seguente relazione:

\[\text{netOD} = OD_{film\ irradiato} - OD_{background} \] \hspace{1cm} (3.2)

A seguito di una procedura di calibrazione, la \textit{netOD} può essere messa in relazione con la dose assorbita dallo strato attivo del film.

Come già anticipato, con i RCF si può eseguire un’accurata mappatura bi-dimensionale della dose assorbita con una risoluzione spaziale dell’ordine delle decine di micrometri\(^\text{10}\). I Gafchromic sono prodotti in vari modelli per cercare di soddisfare le varie esigenze che si presentano in ambito dosimetrico, in particolare possono essere utilizzati in differenti range di dose compresi tra \(10^{-3} \) Gy e \(10^{4} \) Gy e con rateo di dose anche superiori a \(10^{9} \) Gy/s [23] [2].

\(^{10}\) Questa risoluzione spaziale dipende sostanzialmente dalla risoluzione dello specifico strumento di lettura utilizzato.
I RCF assumono una colorazione bluastre una volta irradiai e presentano uno strato attivo che ha un picco di assorbimento nel rosso dello spettro del visibile (vedi Figura 3.1). Questa maggior variazione di OD per unità di dose assorbita può essere sfruttata per ottenere una migliore sensibilità al momento della lettura del RCF.

![Figura 3.1 – Spettro di assorbimento di un RCF che mostra il picco a 675 nm. [26]](image)

Quando i RCF cominciarono ad essere utilizzati, essi venivano letti attraverso dei densitometri, ma a causa dei lunghi tempi richiesti dalla misura e dei costi che tale metodo di digitalizzazione richiedeva, furono rimpiazzati con successo da scanner professionali a CCD. Molte sono comunque le variabili che devono essere tenute sotto controllo durante tutto il processo di utilizzo di questi film e che possono inficiare l’accuratezza della misura, come per esempio la temperatura, l’esposizione a raggi UV, un campo luce non uniforme etc. A tale scopo di solito si usa stilare un protocollo dosimetrico con lo scopo di controllare quanto possibile questi fenomeni e di favorire la riproducibilità della misura.

3.2.1 Descrizione modelli utilizzati:

3.2.1.1 HD-810

Il modello HD-810 è fornito dalla casa costruttrice in un formato di dimensioni 20,32 x 25,40 cm2. Ogni pacco contiene 5 fogli e ognuno di essi fa parte di uno stesso lotto di produzione numerato e classificato. È importante annotare il numero del lotto in quanto fogli appartenenti a lotti diversi potrebbero dare risposte leggermente differenti tra loro a causa di operazioni manifatturiere differenti.
Questo tipo di film è costituito da tre strati differenti sia per spessore sia per composizione atomica percentuale. La base è costituita da uno strato di poliestere di circa 97 μm di spessore sul quale sono stati depositati in successione uno strato attivo di circa 6.5 μm di spessore e uno strato superficiale di gelatina di circa 0.75 μm di spessore.

![Figura 3.2 – Configurazione di un RCF modello HD-810](image)

Questo modello di dosimetro ha quindi il rivestimento attivo da un solo lato del poliestere e lo strato superficiale di gelatina si può considerare trascurabile. Quindi la radiazione che incide su questo modello di RCF va ad interagire direttamente con lo strato attivo senza essere attenuato da eventuali strati morti, come invece avviene per l’EBT3. Questa caratteristica lo rende preferibile rispetto a tutti gli altri modelli di Gafchromic®, l’unico vincolo è che esso può essere utilizzato solo per range di dose compresi tra 10 e 400 Gy. Quindi un particolare accorgimento che bisogna compiere prima di effettuare una misura è quello del riconoscimento dello strato attivo. Questo rivestimento può essere riconosciuto attraverso due differenti test:

1. Se si alita sul foglio e si nota un leggero appannamento vuol dire che siamo difronte allo strato morto, altrimenti siamo difronte allo strato attivo.
2. Se si deposita una goccia di acqua su un lato e assume una colorazione biancastra, allora quello è lo strato attivo, altrimenti è lo strato morto.

Nella tabella seguente sono riportate le composizioni atomiche percentuali di tutti gli strati che compongono il film.

<table>
<thead>
<tr>
<th>Strato</th>
<th>Spessore [µm]</th>
<th>Densità [g/cm3]</th>
<th>Composizione atomica percentuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear polyester</td>
<td>97</td>
<td>1.35</td>
<td>C 45.45, H 36.36, O 18.19</td>
</tr>
<tr>
<td>Active layer</td>
<td>6.5</td>
<td>1.08</td>
<td>C 29.14, H 56.80, O 7.12, N 6.94</td>
</tr>
<tr>
<td>Surface layer</td>
<td>0.75</td>
<td>1.2</td>
<td>C 24.36, H 55.22, O 12.82, N 7.6</td>
</tr>
</tbody>
</table>

Tabella 3.1 – Composizione atomica percentuale del Gafchromic modello HD-810. [27]
3.2.1.2 EBT 3

Il modello EBT 3 è un modello tra i più nuovi fornito dalla casa produttrice ISP. Esso viene distribuito in un formato di dimensioni 20.32 x 25.40 cm^2. Ogni pacco contiene 25 fogli e ognuno di essi fa parte di uno stesso lotto di produzione numerato e classificato. È importante, anche in questo caso, annotare il numero del lotto per lo stesso motivo spiegato per il modello HD-810 ma anche indentificare con dei segni l’orientazione landscape o portrait così come vedremo in seguito.

Questa simmetria fa sì che il film possa essere letto e irraggiato da ambedue i lati senza incorrere in sostanziali differenze di risposta. Durante questo lavoro, però, si è preferito indentificare un lato e mantenere lo stesso orientamento sia in fase di irraggiamento sia in fase di lettura per evitare problemi dovuti a eventuali disuniformità tra i due lati.

Come anticipato gli EBT3 sono un modello relativamente nuovo e la ISP non ha ancora divulgato tutte informazioni a loro riguardo. Vi sono solo poche informazioni riguardanti la composizione atomica percentuale e la densità dello strato attivo che, secondo quanto riporta la ISP, ha le stesse caratteristiche dello strato attivo del modello precedente: l’EBT2.

Nel corso di questo lavoro di tesi è stata estesa questa considerazione a tutti gli strati dell’EBT3 considerando cioè una composizione atomica percentuale simile a quella degli EBT2 mentre la densità totale media del film è stata calcolata eseguendo misure dirette di dimensione e peso. Nella tabella seguente sono riportate le composizioni atomiche percentuali di tutti gli strati che compongono il film EBT3.

<table>
<thead>
<tr>
<th>Strato</th>
<th>Spessore [µm]</th>
<th>Densità [g/cm^3]</th>
<th>Composizione atomica percentuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matte polyester</td>
<td>125</td>
<td>1.35</td>
<td>C 45.30 H 36.40 O 18.10 Li 0.10 Al 0.10</td>
</tr>
<tr>
<td>Active layer</td>
<td>28</td>
<td>1.2</td>
<td>C 26.60 H 55.80 O 10.70 Li 5.30 Al 1.60</td>
</tr>
</tbody>
</table>

Tabella 3.2 - Composizione atomica percentuale del Gafchromic modello HD-810.
3.2.2 Processo di polimerizzazione

La formazione dell’immagine sui RCF è dovuta ad un processo di stato solido che produce un polimero colorato in seguito ad una reazione che avviene all’interno dello strato attivo del film: la polimerizzazione. Esso è un processo per cui più molecole di uno stesso composto, per lo più organico e di basso peso molecolare (monomero), si uniscono per formare una molecola plurima (polimero) con peso molecolare maggiore.

In particolare ciò che avviene all’interno dello strato attivo dei RCF e che determina la variazione della loro densità ottica è spiegato di seguito.

Il materiale attivo del RCF è costituito da una lunga catena di acidi grassi provenienti da una classe di molecole conosciute come di-acetileni, presenti sotto forma di cristalli submicrometrici. I componenti di questa famiglia sono sensibili alle radiazioni, ma mostrano tale proprietà solo in presenza di un ordine intermolecolare, quindi solo quando essi si trovano in uno stato cristallino. Quando il monomero viene esposto ad una radiazione ionizzante comincia il processo di polimerizzazione con la formazione di una molecola, il polimero di acetilene, che fa assumere al RCF una colorazione blu [28].

![Modello della catena polimerica](image.png)

Figura 3.4 - Modello della catena polimerica che si forma per effetto dell’interazione dei monomeri sensibili del film GafCromico (rappresentati a sinistra) con la radiazione, dove R rappresenta i grossi frammenti di molecole organiche con peso molecolare superiore a 150 Da. [29]

11 L’unità di massa atomica unificata (u) detta anche dalton (Da) è un'unità di misura utilizzata solitamente per esprimere la massa di singoli atomi (massa atomica), molecole (massa molecolare), ioni, radicali e delle particelle elementari.
La variazione cromatica dei film si traduce in termini di aumento dell’assorbanza, o densità ottica (DO).

3.2.3 Dipendenza della risposta dal rateo di dose

La casa produttrice dichiara che, a parità di dose assorbita, la risposta del RCF, varia al massimo del 5% se soggetto a ratei di dose compresi tra 0.034 Gy/min e 3.4 Gy/min, tuttavia non viene dichiarato il tipo di radiazione utilizzata e tale affermazione è valida solo per quei modelli contenenti PCDA\(^\text{12}\) (es. HD-810). Nonostante ciò, dai risultati riportati in letteratura, che adesso saranno esposti, si potrà dedurre che, sino ad oggi, non è osservata alcuna dipendenza significativa dal rateo di dose. Alcuni gruppi di ricerca hanno verificato tale dipendenza. Nel caso del modello EBT, contenente LiPCDA\(^\text{13}\), Rink et al. hanno osservato che vi è una differenza di risposta solo dell’1% tra i ratei di dose 0.016 – 0.520 Gy/min [30]. I dati appena citati si riferiscono a studi eseguiti con ratei di dose che solitamente possono essere utilizzati nei tipici trattamenti di radioterapia o brachiterapia e che sono comunque lontani da quelli che si incontrano quando si utilizzano acceleratori laser-driven. A questo proposito, l’attività del gruppo di Niroomand-Rad ha evidenziato che, utilizzando elettroni, vi è un’indipendenza dal rateo di dose fino a \(10^6\) Gy/min [31]. Ulteriori studi sono stati, quindi, condotti con tali tipi di fasci per testare i RCF con ratei di dose dell’ordine di \(10^8\) Gy/s, cioè di diversi ordini di grandezza superiori rispetto a quelli raggiunti con fasci convenzionali. Li et al. (2000) hanno mostrato che per fasci pulsati di raggi X la risposta del film non varia significativamente fino ad un rateo di dose di \(5\cdot10^8\) Gy/s [32].

McLaughlin et al. (1996) ha effettuato irraggiamenti con un rateo di dose di \(4\cdot10^8\) Gy/s, senza riportare alcuna dipendenza della risposta. Inoltre Karsch et al., utilizzando fasci pulsati di elettroni, hanno mostrato l’indipendenza degli EBT fino a ratei di dose pari a \(4\cdot10^9\) [33]. Altri ricercatori, invece, non si preoccupano di eventuali effetti dovuti al rateo di dose, come Breschi et al. (2004), Cowan et al. (2008), Schillmeier et al. (2008) e Nurnberg et al. (2009), secondo i quali si può assumere che se non si verificano effetti significativi nel range compreso tra \(10^3\) e \(10^5\) Gy/s, tale comportamento può essere estrapolato anche a ratei di dose più elevati. In definitiva, sulla base di quanto riportato, i RCF si prestano meglio, rispetto ad altri dosimetri, a misure di caratterizzazione dosimetrica di fasci laser-driven, garantendo un’indipendenza della loro risposta anche ad alti ratei di dose.

\(^{12}\) PCDA: Pentacosa-10,12-diynoic acid

\(^{13}\) LiPCDA: Lithium pentacosa-10,12-diynoate
3.2.4 Dipendenza della risposta dalla temperatura
La temperatura è un parametro da tenere sotto controllo sia durante l’irraggiamento che durante la fase di scansione dei film, poiché può determinare, a parità di dose assorbita, un differente annerimento del film che comporterà quindi una misura falsata di dose. In particolare, forti sbalzi di temperatura possono determinare effetti permanenti sull’annerimento, se avvengono durante la fase di irraggiamento, o transitori, se avvengono durante il processo di scansione. In generale gli effetti si manifestano in maniera diversa a seconda del modello di Gafchromic utilizzato e, comunque, si possono considerare trascurabili se si utilizza uno scanner con una sorgente luminosa che non riscaldi troppo il film durante la lettura e se, durante tutto il processo di utilizzo, la temperatura ambiente viene mantenuta costantemente nell’intervallo 18°C – 25°C.

3.2.5 Dipendenza della risposta dall’energia
La casa costruttrice dichiara, a parità di dose assorbita, una differenza di densità ottica netta del 5% tra film irradiati con fasci di fotoni di energia compresa tra 1 e 18 MeV, per quanto concerne il modello HD-810 [34]. Muench et al. hanno confrontato la variazione della risposta di un film radiocromico HD-810 con quella dei TLD LiF, come mostrato in Figura 3.5, utilizzando fasci di fotoni di energia compresa tra 20 e 1710 keV. Da questo confronto è emerso che la risposta del film radiocromico può essere fino al 30% inferiore rispetto a quella dei TLD per energie pari a 20-30 keV, ma tale differenza si riduce al 5% per energie dei fotoni maggiori del MeV.

![Figura 3.5 - Confronto tra la sensibilità relativa del film HD810 e dei LiF TLD, in funzione dell’energia dei fotoni incidenti.](image)

Per quanto concerne il modello EBT2, Arjomandy et al. hanno verificato che per differenti tipi di fasci, tra i quali fasci di raggi X di energia compresa tra 6 e 18 MV, fasci di elettroni di
energia compresa tra 6 e 20 MeV e fasci di protoni tra 100 e 250 MeV, la dipendenza della risposta dall’energia è minore del 5% [35].

Nel caso di particelle cariche pesanti, che presentano un LET più alto rispetto ai fotoni soprattutto nella regione del picco di Bragg, si ha che, nelle vicinanze della traiettoria della particella incidente, la dose locale ceduta a livello microscopico supera il range di dose del film. Di conseguenza, la polimerizzazione è localmente saturata e così una parte dell’energia depositata non determina una risposta misurabile. Numerosi sono gli studi rivolti alla quantificazione della dipendenza energetica dei film sia nel caso di protoni sia in quello degli ioni più pesanti. I primi esperimenti sono stati effettuati da Piermattei et al. nel 2000 utilizzando i RCF MD-55, ormai in disuso. Da questo e da altri lavori pubblicati si può notare che vi è una sottostima della dose da parte dei film che va dal 5% al 20% nella regione del picco di Bragg. Kojima et al. (2003) irraggiarono gli HD-810 con diverse varietà di specie atomiche di energie comprese tra 3 e 45 MeV/A e conclusero che era il LET più alto a provocare tale sottostima di dose.

3.2.6 **Fattore di correzione RCF \(g_{0,0} \)**

A questo punto, una volta delineato il profilo di questi film radiocromici attraverso la descrizione delle principali caratteristiche fisiche e di funzionamento si è in possesso delle conoscenze necessarie per utilizzarli al meglio e per introdurre un concetto nuovo necessario a rendere tali dosimetri una valida alternativa alle camere a ionizzazione che sarà denominato fattore di correzione \(g_{Q,Q_0} \) per i film radiocromici.

Infatti, oltre che nel caso della camera a ionizzazione, deve essere applicata una correzione anche nel caso degli RCF calibrati con un fattore di qualità\(^{14}\) differente rispetto a quello usato per la dosimetria. Nel caso dei protoni, la qualità del fascio varia con la profondità e quindi tale correzione dovrebbe essere applicata sempre, sia per dosimetria relativa che per dosimetria assoluta.

Una possibile definizione del fattore di qualità è la seguente:

\(^{14}\) Il fattore di qualità di un fascio è definito come il rapporto della ionizzazione misurata in un fantoccio ad acqua nel punto in cui si effettua la misura diviso la ionizzazione misurata ad una profondità fissata tra sorgente e rivelatore, solitamente uguale a quella fissata in fase di calibrazione.
\begin{equation}
g_{Q,Q_0} = \frac{(s_{w,\text{film}})_{Q} G_{Q_0}}{(s_{w,\text{film}})_{Q_0} G_{Q}}
\end{equation}

3.3

dove \(Q \) rappresenta il fattore di qualità del fascio alla profondità di misura e \(Q_0 \) rappresenta il fattore di qualità del fascio fissato in fase di calibrazione; \(s_{w,\text{film}} \) è il rapporto tra il potere frenante della radiazione in acqua e quello nello strato attivo del film e \(G \) è il fattore di polimerizzazione (Li)PCDA in \([\text{mol/J}]\). In particolare \(1/G \) è analogo, nel caso della camera a ionizzazione, al rapporto \(W_{\text{air}}/e \) e rappresenta l’energia necessaria per produrre un’unità di segnale [2].

Ad energie molto basse in prossimità quindi del picco di Bragg, la risposta del RCF comincia a subire effetti di saturazione (detti anche effetti di quench), i quali nella formula sono espressi dal fattore \(G_{Q} \) e ciò comporta un aumento del fattore di correzione \(g_{Q,Q_0} \). Tale fattore di correzione, se opportunamente calcolato per ogni fattore di qualità \(Q \), moltiplicato per il valore \(d_{w,Q_0}(\text{netOD}) \) produrrà un valore di dose assorbita che sarà eguale a quello misurato da una camera a ionizzazione.

\begin{equation}
(D_{w,Q})_{lc} = (D_{w,Q})_{\text{film}} = d_{w,Q_0}(\text{netOD}) g_{Q,Q_0}
\end{equation}

3.4

dove \(d_{w,Q_0}(\text{netOD}) \) rappresenta il valore di dose calcolato a partire dalla densità ottica netta del film usando una curva di calibrazione ottenuta utilizzando un fascio che presenta un fattore di qualità \(Q_0 \).

Questi effetti di attenuazione della risposta si manifestano sia nella regione in prossimità del picco di Bragg che nella parte dello spread-out Bragg peak (SOBP); essi sono stati largamente attribuiti all’effetto di saturazione che si verifica lungo la traiettoria della particella incidente quando questa presenta un alto valore del LET. Molto pochi, se non nessuno, sono i meccanismi noti attraverso cui questo fenomeno si manifesta, l’effetto potrebbe essere analogo alla dipendenza dal LET del gel di polimeri descritti da Gustavsson et al (2004). La polimerizzazione nel caso del gel di polimeri è dipendente dalla formazione dei radicali liberi dovuti alla ionizzazione. Se la densità di questi radicali liberi lungo la traiettoria della particella diventa molto alta (come nel caso di una particella con alto LET) si ha un significante effetto di ricombinazione che porta ad un numero inferiore di eventi di polimerizzazione; questo nel caso dei RCF si tradurrebbe in un annerimento inferiore. Una spiegazione alternativa è quella portata avanti da Jirasek e Duzenli (2002) per i
polyacrylamide gel, i quali affermano che se i siti di attivazione o di polimerizzazione sono disposti nello spazio con una certa separazione e se tutti i siti vicini alla traccia di una singola particella ionizzante sono stati ‘colpiti’ ne consegue che la polimerizzazione locale è saturata e un incremento del LET non si traduce in un locale aumento della risposta in dose [36].

3.2.7 Sistema di acquisizione del RCF
La lettura di un film radiocromico non si limita ad essere una semplice scansione. Infatti è stato necessario istituire un preciso protocollo da seguire, in primo luogo per rendere confrontabili letture eseguite in momenti differenti e per garantire la riproducibilità della misura. Lo strumento utilizzato per la lettura della risposta dei RCF è lo scanner. Uno scanner ideale per la scansione di RCF deve avere le seguenti caratteristiche:

- Uniformità del campo luce;
- Nessuna componente UV da parte della sorgente di luce;
- Riscaldamento minimo del film da parte della luce dello scanner;
- Minima polarizzazione da parte della sorgente di luce;
- Velocità di acquisizione;
- Alta riproducibilità.

Nel corso di questo lavoro di tesi per eseguire la digitalizzazione dei film è stato utilizzato lo scanner a trasmissione Epson Expression Pro 1680 e il software di acquisizione ad esso associato: l'Epson Scan.

L’Epson Expression Pro 1680 presenta le seguenti caratteristiche:

<table>
<thead>
<tr>
<th>Scanner Type</th>
<th>Flatbed color image scanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectric Device</td>
<td>Color MatrixCCD line sensor</td>
</tr>
<tr>
<td>Optical Resolution</td>
<td>1600 dpi</td>
</tr>
<tr>
<td>Hardware Resolution</td>
<td>1600x3200 dpi with Micro Step Drive technology</td>
</tr>
<tr>
<td>Maximum Resolution</td>
<td>12800x12800 dpi with software interpolation</td>
</tr>
<tr>
<td>Effective Pixels</td>
<td>13,600x18,720 pixels (1600 dpi)</td>
</tr>
<tr>
<td>Color Hardware Bit</td>
<td>48-bits per pixel internal, 48-bits per pixel</td>
</tr>
<tr>
<td>Depth</td>
<td>external (External bit depth is selectable to 48 bits depending on the image editing software.)</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Grayscale Hardware</td>
<td>16-bits per pixel internal, 16-bits per pixel external (External bit depth is selectable to 16 bits depending on the image editing software.)</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>16-bits per pixel internal, 16-bits per pixel external (External bit depth is selectable to 16 bits depending on the image editing software.)</td>
</tr>
<tr>
<td>Optical Density</td>
<td>3.6 Dmax</td>
</tr>
<tr>
<td>Scaling (Zoom)</td>
<td>50% to 200% (1% step)</td>
</tr>
<tr>
<td>Brightness</td>
<td>7 levels</td>
</tr>
<tr>
<td>Focus Control</td>
<td>Dual Focus Control</td>
</tr>
<tr>
<td>Transparency Unit</td>
<td>8.5” x 11.7” Transparency Adapter with holders for 35mm slides, film strips, 4” x 5” and 2-1/4” transparencies.</td>
</tr>
<tr>
<td>Maximum Read Area</td>
<td>8.5” x 11.7” (216mm x 297mm)</td>
</tr>
<tr>
<td>Light Source</td>
<td>Xenon gas cold cathode fluorescent lamp</td>
</tr>
<tr>
<td>Physical Dimensions</td>
<td>Width: 13.1” (332mm), Depth: 22.1” (562mm), Height: 5.2” (133mm), Weight: 18.7 lb (8.5 kg approx.)</td>
</tr>
</tbody>
</table>

Tabella 3.3 - Caratteristiche scanner Epson Expression Pro 1680

Esso è uno scanner commerciale di alta qualità che, grazie ad un adattatore chiamato “Trasparency Unit” descritto nella tabella sopra, è capace di acquisire anche le pellicole trasparenti in modalità trasmissione. Sfrutta la tecnologia CCD, ha una risoluzione spaziale 1600x3200 dpi ed una profondità di colore di 48 bit. La sorgente luminosa impiegata è di tipo fluorescente al gas Xenon, si muove al di sotto del piano di appoggio dello scanner ed emette luce bianca che successivamente viene divisa nelle 3 componenti RGB tramite appositi filtri posizionati sui sensori della CCD, che si muove, nel caso di scansione in trasmissione, parallelamente dall’altro lato del film da scansionare. Ogni singola componente presenta una risoluzione di 16 bit e ciò comporta la capacità di risolvere bene 65536 livelli di grigio. Il valore di densità ottica massimo che può misurare è 3.6 ed ha una velocità di lettura di 9.2 ms/linea. Infine, la Epson consiglia di utilizzare questo strumento in ambienti in cui la temperatura sia mantenuta tra i 5°C e i 35°C e l’umidità non superi l’80%.
Le principali cause di errore durante la scansione dei RCF sono relative a:

- All’orientazione del film (landscape o portrait o angolazioni intermedie);
- Alla regione del piano dello scanner utilizzata;
- Al tempo che intercorre tra irraggiamento e lettura;
- All’esposizione a raggi UV e ad alte temperature (>60°C);
- Ad eventuali correzioni non volute effettuate dal software di acquisizione;
- All’eventuale presenza di graffi, polvere o Newton’s rings.

Nel corso delle misure effettuate, come già anticipato, sono stati utilizzati due tipi di GAFchromic EBT3 e HD 810, entrambi distribuiti dalla casa costruttrice in fogli delle dimensioni simili a quelle di un foglio A4. Ciò ha reso necessario il taglio di tali fogli di GAFchromic in pezzetti più piccoli delle dimensioni di 3x3 cm2. Su ogni RCF ritagliato, oltre ad un numero identificativo, sono stati segnati dei riferimenti per consentire, sia in fase di irraggiamento che in fase di lettura, di mantenere lo stesso orientamento. Ciò è stato fatto poiché, sia dal datasheet che da specifiche misure, si nota una notevole differenza tra la lettura dello stesso RCF con orientamento landscape e quella con orientamento portrait.

In particolare, per quanto riguarda gli HD-810, oltre all’orientazione, si è prestata particolare attenzione al riconoscimento dello strato attivo poiché, sia in fase di irraggiamento che in fase di lettura, si è scelto di far passare rispettivamente il fascio di particelle e quello luminoso dello scanner prima dallo strato attivo e poi attraverso lo strato morto. Questo è stato fatto per rendere le condizioni di lavoro equivalenti per tutti i film irradiati.

Figura 3.6 – Dipendenza del valore di dose dall’orientazione del film radiocromico EBT3 mostrata utilizzando lo scanner Epson Expression 1680 PRO.
Durante la fase di acquisizione è stato necessario l’uso di una maschera, consistente in un foglio A4 di cartoncino molto spesso con un foro al centro di forma quadrata con dimensioni 3.1x3.1 cm², allo scopo di facilitare il posizionamento del pezzetto di film radiocromico sempre nella stessa regione centrale dello scanner. Questo è stato fatto poiché da misure da me stesso eseguite ed anche da un lavoro pubblicato da Menegotti et al. (2008) si è potuto evincere che solo la regione centrale della CCD restituisce un valore di OD che varia al massimo del 2%.

La variazione di risposta dello scanner che si manifesta quando si allontana dalla regione centrale può essere corretta attraverso l’applicazione di una matrice di correzione, la quale modifierà pixel per pixel l’immagine acquisita. Nel presente lavoro questo non è stato necessario poiché le dimensioni del pezzetto di film radiocromico sono tali da rientrare all’interno della regione centrale, dove la suddetta correzione è irrilevante.

La lettura dei RCF deve essere effettuate ad almeno 24 ore dall’irraggiamento, nel nostro caso si è scelto di leggerli 60 ore dopo l’irraggiamento per essere sicuri che eventuali cambiamenti nella risposta del RCF siano leggermente inferiori all’1%.

Figura 3.7 – Risposte dello scanner Epson Expression 1680 PRO in funzione della posizione del film sul piatto dello scanner.
Figura 3.8 – Variazione della densità ottica all’aumentare del tempo intercorso tra irraggiamento e lettura.

Tabella 3.4 – Variazione percentuale in funzione dell’intervallo di tempo tra irraggiamento e lettura del RCF.

<table>
<thead>
<tr>
<th>Time after Exposure, minutes</th>
<th>% change in response/minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.040%</td>
</tr>
<tr>
<td>30</td>
<td>0.023%</td>
</tr>
<tr>
<td>60</td>
<td>0.011%</td>
</tr>
<tr>
<td>120</td>
<td>0.006%</td>
</tr>
<tr>
<td>240</td>
<td>0.003%</td>
</tr>
<tr>
<td>480</td>
<td>0.001%</td>
</tr>
</tbody>
</table>

Nel tempo che intercorre tra irraggiamento e lettura bisogna stare attenti a non esporre i film a radiazione UV o ad alte temperature in quanto potrebbero alterare la risposta e renderlo inutilizzabile. La lettura e quindi l’acquisizione in formato digitale .tiff di ogni singolo RCF è stata eseguita a 72 e 150 dpi, cioè si è scelto di lavorare con risoluzioni spaziale rispettivamente di 352 µm e di 169 µm, disattivando tutte le eventuali correzioni automatiche dell’immagine eventualmente apportate dal software di acquisizione.

Una volta eseguite le scansioni di tutti i film, se necessario, si può applicare un filtro mediano nella regione di interesse (ROI) per eliminare eventuali difetti, quali per esempio graffi, residui di polvere o difetti propri del RCF. Prima di ogni scansione, comunque, è stata prestata particolare attenzione alla pulizia sia dei film che del piatto dello scanner.

La fase successiva all’acquisizione consiste nell’elaborazione dati, realizzata attraverso software commerciali e programmi realizzati ad hoc. Un software utilizzato è il “Picodose 8.0 Pro” prodotto da Tecnologie Avanzate (T.A.) di Torino con cui, tra le tante cose, è possibile selezione il canale RGB di acquisizione nel quale il film presenta una risposta.
migliore, in questo caso il rosso, e analizzare il film misurandone il valore di OD dello stesso. Un altro software utilizzato è stato Matlab®, abbreviazione di Matrix Laboratory. Esso è un ambiente per il calcolo numerico e l’analisi statistica che comprende anche l’omonimo linguaggio di programmazione creato dalla MathWorks. Con il software Matlab è stato realizzato un programma per l’analisi dei RCF, in grado di trasformare la matrice di densità ottica in una matrice di dose, tramite un’opportuna calibrazione dose/OD. È stato, inoltre, realizzato, con lo stesso software, l’algoritmo per la ricostruzione dello spettro dei protoni, come descritto più in dettaglio nel capitolo 5.
CAPITOLO 4 – DOSimetria con film radiocromici
In questo capitolo saranno descritte tutte le procedure seguite al fine di calibrare i RCF (RadioChromic Film) e le tecniche di utilizzo di questi dosimetri al fine di ottenere le curve di dose in profondità. In entrambi i casi, in questo lavoro di tesi, è stato utilizzato un fascio di protoni accelerato dal ciclotrone superconduttore presente ai LNS di Catania e le misure sono state svolte all’interno della sala CATANA, usualmente utilizzata per il trattamento di tumori oculari con protoni. Inoltre, durante l’analisi dati è stato necessario utilizzare il fattore di correzione, introdotto nel paragrafo 3.2.6, allo scopo di correggere gli effetti di sottostima della dose che si verificano in prossimità della fine del range della particella nel RCF. Questi effetti, infatti, si verificano quando il RCF viene irradiato con fasci che presentano un fattore di qualità ed un valore di LET molto differente da quello utilizzato per la calibrazione. Inoltre, saranno descritti i software utilizzati per l’acquisizione dati e per l’analisi.

4.1 Apparato sperimentale:

4.1.1 Il Ciclotrone Superconduttore.

Come già detto il fascio di protoni viene accelerato dal ciclotrone superconduttore presente ai LNS-INFN di Catania. Questo acceleratore è operativo dal 1994; è una macchina di tipo azimuthally varying field (AVF), compatta a tre settori (tre valli e tre creste). Il raggio del polo è 90 cm e il campo magnetico varia da 2.2 T a 4.8 T. Questo si ottiene con bobine superconduttrici di Nb-Ti attraversate da una corrente di 6.5 MAturn, poste simmetricamente al piano mediano e raffreddate fino alla temperatura di 4.2 K in una soluzione di elio liquido. L’iniezione è assiale e l’estrazione avviene attraverso due deflettori elettrostatici posti in corrispondenza di due creste. La radiofrequenza è variabile tra 15 e 48 MHz, l’energia degli ioni è compresa tra 8 e 100 MeV/A. Le energie massime previste della macchina sono 20 MeV/A per gli ioni pesanti, come 238U$^{38+}$, e 100 MeV/A per nuclei leggeri completamente ionizzati; questi valori sono dovuti ai vincoli imposti dal limite di deflessione denominato K bending ($K_b=800$) e dal limite di focalizzazione verticale, detto K focusing ($K_f=200$).

4.1.2 La sala CATANA

Il centro CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) [37] si trova presso i LNS-INFN di Catania. In esso vengono trattati i melanomi oculari, in particolare della coroide e dell’iride, mediante un fascio di protoni da 62 MeV accelerato dal ciclotrone superconduttore.
Il fascio, in uscita dal ciclotrone, non presenta le caratteristiche necessarie per il trattamento, poiché ha una distribuzione gaussiana larga circa 2 mm lungo il piano perpendicolare alla direzione del fascio stesso. Di seguito sarà descritta la linea di trattamento e tutti gli elementi passivi utilizzati per trasformare il fascio in un fascio clinico e fare, al contempo, un monitoraggio on-line (Figura 4.1):

Figura 4.1 - Elementi posti in aria nel tratto finale della linea di fascio che ne determinano le caratteristiche terapeutiche e ne assicurano il monitoraggio (Linea di Trattamento, le misure sono tutte espresse in mm)

1. un fogliolino di tantalio di 15 µm, per controllare la corrente e per produrre una prima diffusione del fascio, infatti un fascio che incide su un sottile spessore di materiale ne esce con una distribuzione che può essere approssimata con una gaussiana e il risultato sarebbe simile a quello riportato in Figura 4.2.

Figura 4.2 - Profilo ottenuto con un singolo fogliolino

2. Per migliorare l’omogeneità del profilo è stato posto un secondo diffusore costituito da un fogliolino di tantalio di 25 µm al cui centro vi è uno stopper di ottone cilindrico di 4 mm di diametro e 7 mm di spessore.

La tecnica del doppio diffusore consente di avere una migliore uniformità di distribuzione dei protoni sul piano XY permettendo di ridurre decisamente entrambi gli spessori dei
fogliolini, con un certo risparmio energetico rispetto alla tecnica che utilizza un singolo fogliolino. Lo stopper, posto sul secondo diffusore, ha la funzione di eliminare la componente centrale, più pronunciata, della distribuzione gaussiana dei protoni diffusi dal primo fogliolino. Ciò produce all’isocentro, a parità di spessore attraversato, una distribuzione di dose con una più ampia zona di uniformità rispetto al singolo foglio (vedi Figura 4.3) e, contemporaneamente, una minore perdita di energia.

Figura 4.3 - Profilo ottenuto da due foglioni (15 μm + 25 μm in Tantalio) in aggiunta lo stopper (7 mm in rame) sul secondo.

3. Un range shifter di PMMA o alluminio, per degradare passivamente l’energia dei protoni in modo tale da far coincidere la profondità a cui si troverà il picco di Bragg con la profondità del tumore.

4. Un modulatore, per “allargare” il picco in maniera da coprire l’intera regione tumorale ed estendere la dose prescritta a tutto lo spessore considerato.

Il modulatore è un sistema motorizzato con una ruota di PMMA (vedi Figura 4.4) che ha esternamente una serie di palette di differenti spessori le quali messe in rotazione permettono di modulare l’energia del fascio dando luogo al picco di Bragg modulato (vedi Figura 4.5). Tale elemento è essenziale per l’intera irradiazione longitudinale del tumore.
5. Due camere a ionizzazione in trasmissione (camere monitor), utilizzate per il monitoraggio on-line della dose rilasciata al paziente. Tali camere sono costituite da due fogli di Kapton spessi 25 μm separati da 9 mm di aria e ricoperti internamente da uno strato di 224 Å di rame che rende le pareti conduttrici. Le camere monitor devono essere calibrate prima di ogni seduta di trattamento. Per questo scopo viene posizionato un fantoccio ad acqua con una camera a ionizzazione di tipo Markus lungo la linea del fascio e si determina il rapporto tra la dose inviata e il numero di unità monitor (U.M.) registrate e quindi il fattore di conversione tra U.M. e dose assorbita.

6. Un collimatore personalizzato, per delineare il contorno del tumore.
Durante i trattamenti di adroterapia questi collimatori presentano un profilo progettato ad hoc per seguire il contorno tumorale del paziente. Nel corso delle misure sperimentali sono stati utilizzati dei semplici collimatori circolari di diversi diametri a seconda della misura effettuata.

7. Un sistema di posizionamento formato da un campo luce e un laser.

Questo sistema è utilizzato sia per posizionare il paziente sia per il posizionamento dei dosimetrici utilizzati nel corso delle misure. In particolare il campo luce è costituito da un fascio luminoso e uno specchio mobile e serve a simulare il fascio che attraversa il sistema di collimazione. Il laser invece serve ad identificare la posizione dell’isocentro.

8. La sedia motorizzata.

Questa sedia, utilizzata per il posizionamento del paziente, presenta sette gradi di libertà, tre per la testa e quattro per il corpo. Per le misure effettuate nel presente lavoro di tesi è stato utilizzato lo stesso sistema motorizzato della sedia con l’aggiunta di un supporto metallico su cui è possibile posizionare i rivelatori utilizzati.

4.2 Operazioni preliminari di dosimetria relativa:

4.2.1 Diagnostica del fascio con Gafchromic e diodo a semiconduttore

Oltre alle curve in profondità misurate lungo l’asse del fascio (Z), che saranno descritte nei prossimi paragrafi, per caratterizzare un fascio di protoni è necessario ottenere le curve di dose lungo le direzioni orizzontale (X) e verticale (Y). Queste curve vengono chiamate profili trasversali del fascio e vengono ricavate con un rivelatore posizionato nel canale di ingresso nel caso di un fascio non modulato, o al centro dello spread-out Bragg peak (SOBP) nel caso di un fascio modulato (vedi Figura 4.6).

![Figura 4.6](image.png)

Figura 4.6 – Nella (a) è stata identificata con la freccia la regione di ingresso del fascio; nella (b) la freccia indica la regione al centro del SOBP. Questi sono i punti che devono, a seconda del caso, essere posizionati all’isocentro.
Quindi, prima di acquisire la dose in profondità ed effettuare le procedure di calibrazione bisogna eseguire un controllo di questi profili lungo le direzioni ortogonali alla direzione del fascio, per verificarne l’omogeneità. Per effettuare questo controllo sono stati utilizzati due differenti rivelatori:

- un film radiocromico;
- un diodo a semiconduttore.

Entrambi sono controlli di tipo qualitativo. Il controllo effettuato con i RCF è un metodo veloce mentre il secondo richiede più tempo rispetto al precedente. Per la procedura di centraggio del fascio, inizialmente vengono utilizzati RCF posti poco dopo lo stopper, con i quali si verifica il posizionamento del fascio. Una volta raggiunta una condizione ottimale con i RCF si passa al controllo dei profili X e Y misurati all’isocentro con il diodo a semiconduttore. Il diodo è dotato di un sistema di movimentazione controllato da remoto. Una volta terminata la scansione lungo entrambe le direzioni si passa all’analisi dei dati ottenuti (vedi Figura 4.7), per una verifica quantitativa dei profili, tenendo conto delle specifiche tolleranze.

![Figura 4.7 – Schermata del software di acquisizione profili X e Y (sinistra) e schermata del software di analisi del singolo profilo X o Y (destra)](image)

In particolare, vengono calcolati i seguenti parametri che caratterizzano i profili trasversali di dose:

- Il campo di radiazione (W_{50\%}) è definito come la larghezza a metà altezza del profilo di dose e permette di valutare la grandezza del fascio di protoni.
- La penombra laterale (PSX – PDX) è definita come la distanza tra i punti corrispondenti all’80% ed al 20% del valore centrale e permette di valutare
l’andamento della caduta di dose ai bordi. Questo parametro deve essere più piccolo di 1 mm per fasci non modulati e minore di 1,5 mm nel caso di fasci modulati.

- Simmetria del fascio (simmetria dei profili di ionizzazione su un piano trasversale all’asse del fascio), essa può essere definita come:

\[
S_r = \frac{|a - b| \times 200\%}{a + b} \quad \text{(Rapporto fra le Aree)}
\]

dove \(a\) = Area alla sinistra dell’asse centrale e \(b\) = Area alla destra dell’asse centrale; le aree sono delimitate dall’asse centrale e dal punto in cui si ha il 50% del campo.

\[
S_r = \left[\left(\frac{D(x)}{D(-x)} \right)_{\text{max}} \right] \times 100\% \quad \text{(Massimo Rapporto di Dose)}
\]

dove \(D(x)\) è la dose al punto \(x\); \(x\) e \(-x\) sono punti simmetrici all’asse del fascio. Tale simmetria viene definita come il massimo rapporto, dentro la maggiore delle regioni tra \(T_{R1}\) e \(T_{R2}\), moltiplicato per 100. I parametri \(T_{R1}\) e \(T_{R2}\) vengono così determinati:

\(T_{R1}\) := regione centrale di larghezza pari all’80% delle dimensioni del campo (\(W_{50\%}\))

\(T_{R2}\) := regione interna di due volte la larghezza della penombra dal punto del 50%.

Dove \(S_r\) può essere minore od uguale al 3% e \(S_T\) deve essere minore od uguale al 103%.

- L’omogeneità del fascio (\(R_{\%\%}\)) è un valore percentuale che indica quanto il fascio è omogeneo nella regione centrale e viene calcolato attraverso la seguente formula:

\[
R_{\%\%} = \left(\frac{P_{\text{max}} - P_{\text{min}}}{P_{\text{max}} + P_{\text{min}}} \right) \cdot 100
\]

dove \(P_{\text{max}}\) e \(P_{\text{min}}\) sono il valore massimo e quello minimo misurati nella regione tra il 95% ed il 100%. Questo parametro deve essere inferiore al 2,5%.

- Il rapporto tra la larghezza del profilo al 90% ed il 50%, indicato con il simbolo 90%/50%, permette di valutare quanto il profilo assomigli ad un gradino e deve essere maggiore od uguale a 0,9.

I valori che questi parametri hanno assunto nel corso delle misure effettuate con un picco non modulato con un collimatore da 25 mm di diametro sono i seguenti:
4.2.2 Acquisizione del picco di Bragg non modulato con la camera Advanced Markus

Una volta terminata la procedura di centraggio del fascio e di verifica dei profili laterali, si passa all’acquisizione del picco di Bragg puro per ottenere le informazione riguardo il range residuo necessario a calcolare i giusti rapporti tra gli stopping power che saranno utilizzati...
per determinare la dose in acqua e quindi per effettuare la dosimetria assoluta come descritto nel precedente paragrafo 2.3.3.7.

Per effettuare la misura della curva di ionizzazione in profondità è stata utilizzata una camera Markus di tipo Advanced inserita all’interno di un fantoccio ad acqua. Esso è dotato di un sistema di movimentazione controllabile anche da remoto, realizzato presso i LNS. L’acquisizione è stata eseguita con passi da 200 μm nella regione del plateau e con un passo da 100 μm nella regione del picco. Al fine di determinare esattamente la profondità di misura sono stati misurati tutti gli spessori presenti davanti l’area attiva della camera e la somma di essi è pari a 2,8 mm di spessore acqua-equivalente. Lo spessore citato è dovuto alla presenza della finestra della camera stessa e allo spessore della finestra del fantoccio utilizzato.

![Figura 4.9 – Esempio di picco di Bragg non modulato acquisito con la camera Markus Advanced inserita in un fantoccio riempito di acqua.](image)

L’elaborazione delle informazioni legate al picco di Bragg non modulato appena acquisito, è eseguita utilizzando un software sviluppato ai LNS e consiste nel calcolo dei seguenti parametri:

1. FWHM: larghezza a metà altezza del picco di Bragg non modulato.
2. Penombra (80%-20%): con questo termine viene indicata la distanza tra i punti, presenti nella parte distale del picco, che corrispondono all’80% ed al 20% della dose massima. Deve essere minore di 1 mm.
3. **Penombra (90%-10%)**: con questo termine viene indicata la distanza tra i punti, presenti nella parte distale del picco, che corrispondono all’90% ed al 10% della dose massima. Deve essere minore di 1 mm.

4. **Range pratico**: è definito come la profondità alla quale la dose assorbita diviene il 10% di quella massima ed è misurato nella parte distale del picco di Bragg o del SOBP.

5. **Rapporto picco/plateau**: è il rapporto tra il valore massimo registrato in corrispondenza del picco ed il valore misurato all’ingresso.

6. **Range residuo**: solitamente espresso in g/cm^2 è definito come:

$$R_{\text{res}} = R_p - z$$

dove z indica la profondità di misura e R_p indica il range pratico dei protoni.

Figura 4.10 – Esempio di range residuo e pratico.

<table>
<thead>
<tr>
<th>FWHM [mm in acqua]</th>
<th>Penombra (80%-20%)</th>
<th>Penombra (90%-10%)</th>
<th>Range pratico [mm in acqua]</th>
<th>Rapporto picco/plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picco Puro</td>
<td>2.974 mm</td>
<td>0.436</td>
<td>0.702</td>
<td>30.374</td>
</tr>
</tbody>
</table>

Tabella 4.3 – Dati ottenuti in seguito all’acquisizione del picco di Bragg non modulato ottenuto con un fascio di protoni da 62 MeV.
4.2.3 Acquisizione del picco di Bragg modulato con la camera Markus Advanced

L’acquisizione del picco di Bragg modulato è stata effettuata ponendo tra fascio e rivelatore un modulatore rotante (vedi Figura 4.4) di PMMA, descritto nel paragrafo 4.1.2, al fine di ottenere uno SOBP.

Anche nel caso del picco modulato vengono calcolati i parametri enunciati nel paragrafo 4.2.2 e si verifica se essi rispettano le tolleranze imposte. Dal picco modulato, inoltre, si ottengono informazioni riguardo il profilo di dose in profondità in base alle quali sarà possibile determinare la corretta profondità a cui devono essere posti i RCF.

<table>
<thead>
<tr>
<th>Larghezza SOBP [mm]</th>
<th>Penombra (80%-20%) [mm]</th>
<th>Penombra (90%-10%) [mm]</th>
<th>Pratical range [mm]</th>
<th>Rapporto picco/plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picco Modulato</td>
<td>11.270</td>
<td>0.657</td>
<td>0.914</td>
<td>30.810</td>
</tr>
</tbody>
</table>

Tabella 4.4 – Dati ottenuti in seguito all’acquisizione del picco di Bragg modulato ottenuto con un fascio di protoni da 62 MeV.

4.3 Dosimetria assoluta

4.3.1 Calibrazione della camera MARKUS ADVANCED

La camera a ionizzazione a facce piane e parallele di tipo PTW-MARKUS ADVANCED utilizzata ai LNS è stata fornita dalla PTW-Freiburg insieme ad un datasheet in cui vi sono
informazioni riguardo sia le caratteristiche della camera sia informazioni concernenti la calibrazione effettuata con 60Co presso il laboratorio accreditato per la taratura dosimetrica situato all’interno della stessa azienda tedesca. In particolare nel datasheet viene fornito il fattore di calibrazione ($N_{D,w}$) che verrà usato per calcolare la dose assorbita in acqua (D_w). Il fattore $N_{D,w}$ è, nel caso della camera utilizzata, pari a 1.369 [Gy/nC] ed è stato determinato in condizioni di temperatura e pressione standard.

Al fine di effettuare la calibrazione, la camera Markus Advanced è stata collegata ad un elettrometro. Quest’ultimo è stato utilizzato per effettuare misure integrali di carica e, prima dell’uso, è stato configurato con i parametri del modello della camera utilizzata, impostando, tra le altre cose, la tensione da applicare alla camera stessa. Quindi, attraverso un software, sempre sviluppato ai LNS in ambiente LabVIEW, viene fissato un valore di unità monitor (U.M.) da inviare alla camera Markus. A questo punto viene inviato il fascio sulla camera e viene letto il valore di carica misurato attraverso l’elettrometro; questo valore sarà denominato Γ_{g1843} e rappresenterà la carica totale generata dalla radiazione che colpisce lo strato sensibile della camera.

Quest’ultima operazione si esegue cinque o sei volte, si calcola quindi un valore medio e lo si inserisce nel software di calibrazione insieme a dati riguardanti la camera, le condizioni atmosferiche in cui si sta lavorando e gli altri dati descritti e calcolati nel paragrafo 4.2.2. Utilizzando la seguente formula il software calcola la dose assorbita in acqua:

$$D_w = Q \cdot k_{q,q_0} \cdot \varphi_{Tp} \cdot N_{D,w}$$

4.3

dove Q è la carica letta dall’elettrometro, φ_{Tp} il fattore di correzione dovuto alle condizioni ambientali di temperatura e pressione in cui si effettua la calibrazione, k_{q,q_0} è il fattore di correzione dovuto al differente fattore di qualità del fascio utilizzato rispetto a quello utilizzato in fase di calibrazione.

Ottenuto il valore di dose assorbita in acqua si può ricavare il fattore di conversione tra U.M. e Gray, così da poter erogare, attraverso l’uso delle camere monitor, dosi note nel punto di misura in cui è stata effettuata la calibrazione.

Lo stesso procedimento è stato eseguito anche nel caso in cui è stato utilizzato un fascio che presentava un picco di Bragg modulato, con la differenza che in questo caso il posizionamento della camera non è più all’ingresso ma al centro del SOBP.
4.4 Dosimetria relativa con i Gafchromic con un fascio di protoni da 62 MeV

4.4.1 Calibrazione

Nel corso di questo lavoro di tesi, sono state effettuate due differenti sessioni di misura a distanza di due mesi l’una dall’altra utilizzando, in entrambi i casi, un fascio clinico di protoni da 62 MeV accelerato dal ciclotrone superconduttore presente ai LNS. Per poter utilizzare i RCF come dosimetri è necessario eseguire una taratura di tutti i lotti di Gafchromic utilizzati, anche se appartenenti al medesimo modello. La taratura, infatti, è un processo che va eseguito ogni qual volta si voglia utilizzare un differente lotto di produzione. In questo lavoro sono stati utilizzati, come detto nel capitolo 3, due modelli di Gafchromic gli HD-810 (lot# S26B41H810) e gli EBT 3 (lot# A01241202). Il modello HD-810 è stato utilizzato solo nella sessione di ottobre mentre il modello EBT 3 è stato utilizzato sia nella sessione di ottobre che in quello di dicembre e ciò ha permesso di realizzare due differenti tarature per effettuare un confronto e verificarne la riproducibilità.

I fogli di film radiocromico sono stati ritagliati in pezzetti da 3x3 cm² e su ognuno di essi sono stati praticati dei markers per mantenere sempre sotto controllo l’orientamento e per l’identificazione, come mostrato nella seguente Figura 4.12.

![Figura 4.12 – Esempio di RCF irraggiato.](image)

Alcuni di questi RCF ritagliati sono stati utilizzati per ottenere il valore di densità ottica (OD) di fondo del film; per far ciò è stato deciso di scanionarne otto e dopo aver ottenuto il valore di OD di ciascuno ne è stato calcolato il valore medio che da adesso in poi sarà chiamato $OD_{background}$. I restanti RCF sono stati irraggiati con dosi crescenti fino a raggiungere per entrambi i modelli utilizzati la regione di saturazione. In particolare, sono stati irraggiati 12 film HD-810 con dosi da 25 a 1200 Gy e 15 film EBT 3 con dosi comprese tra 0,30 e 6 Gy, nel turno di ottobre, e 11 film EBT 3 con dosi comprese tra 0,25 e 12 Gy, nel turno di dicembre. Questi film, durante gli irraggiamenti, sono stati posizionati all’isocentro.
utilizzando un fantoccio di PMMA ad una profondità di 2,42 mm (in PMMA). Questo strato di PMMA riproduce lo spessore presente davanti la camera Markus e, quindi, permette di irraggiare il film nelle stesse condizioni di lavoro della camera Markus. I RCF, in fase di taratura, vengono posizionati all’ingresso (vedi Figura 4.13) al fine di evitare che eventuali errori nel posizionamento comportino notevoli variazioni sul valore di dose inviata sul RCF.

Figura 4.13 – Esempio di RCF posizionato all’entrance

Terminato l’irraggiamento, si è effettuata la scansione dei film dopo 24 h, durante la sessione di misura di ottobre, e dopo 48 h, durante quella di dicembre. Quindi per gli EBT3, in quanto irraggiati in entrambe le sessioni, è possibile verificare quanto l’annerimento post-esposizione in funzione del tempo può determinare differenze di risposta.

Il valore di OD di ogni RCF è stato ottenuto utilizzando il programma di elaborazione “Picodose 8.0 Pro”, con il quale è possibile selezionare dall’immagine in formato .tiff solo la componente nella banda del rossò, in cui il film mostra la migliore risposta, e ottenere il valore di OD medio di una ROI\(^{15}\) appositamente selezionata. A questo punto è stato calcolato il valore del netOD, definito come la differenza tra la densità ottica del film irradiato e la densità ottica del film non irradiato.

\[
netOD = OD_{\text{media film irradiato}} - OD_{\text{background}}
\]

\[4.4\]

\(^{15}\) ROI: è l’acronimo inglese di “region of interest” e rappresenta la regione di interesse per la misura.
4.4.1.1 Risultati taratura HD-810 – Turno sperimentale ottobre

In questo paragrafo saranno illustrati i risultati ottenuti in seguito alle operazioni di taratura del modello HD-810 lot# S26B41H810.

Mettendo in relazione le netOD calcolate con la dose inviata sul film è possibile ottenere la seguente curva di taratura per gli HD-810.

La curva di taratura mostrata in Figura 4.14 è stata ottenuta eseguendo un fit polinomiale di sesto grado. Dall’andamento dei punti sperimentali ottenuti, soprattutto nella regione ad alte dosi, si può chiaramente notare il fenomeno della saturazione caratteristico di ogni film radiocromico. L’errore sulla dose è stato stimato considerando i singoli errori attribuiti alla carica Q, al fattore di correzione $q_{T,p}$ dovuto alle condizioni ambientali, agli errori relativi forniti dalla PTW Freiburg riguardo il fattore di calibrazione $N_{D,w}$ e al fattore di correzione $k_{q,d0}$. L’errore sulla netOD è stato stimato considerando l’errore assoluto della densità ottica del film considerato e quello utilizzato per stimare la densità ottica di background.

4.4.1.2 Risultati taratura EBT 3 – Turno sperimentale di ottobre e dicembre

In questo paragrafo saranno illustrati i risultati ottenuti in seguito alle operazioni di taratura del modello EBT3 lot#A01241202 nelle due differenti sessione di misura e al termine sarà eseguito un confronto.
Mettendo in relazione le netOD calcolate con la dose inviata sul film è possibile ottenere la seguente curva di taratura per gli EBT3.

Figura 4.15 - Curva di taratura EBT3 (turno sperimentale di ottobre).

Nel turno sperimentale di dicembre è stato possibile lavorare in condizioni analoghe a quelle del turno di ottobre e mettendo in relazione le netOD calcolate con la dose inviata sul film è possibile ottenere la seguente curva di taratura per gli EBT3.
Figura 4.16 - Curva di taratura EBT3 (turno sperimentale di dicembre).

Se adesso si procede al confronto dei punti sperimentali ottenuti con gli EBT3 nell’ambito dei due turni, vedi Figura 4.17, si può notare come le affermazioni riguardo l’uniformità di risposta dei fogli radiocromici appartenenti allo stesso lotto, riportate precedentemente, rientrino entrambe all’interno dell’errore di misura.

Figura 4.17 – Confronto tra le curve di taratura degli EBT3 acquisite nei due turni sperimentali.
4.4.2 Misure della curva di depth-dose con picco non modulato

La misura di curve di dose in profondità è un’operazione di fondamentale importanza in ambito adroterapico e viene eseguita solitamente, come già discusso in precedenza, utilizzando camere a ionizzazione capaci di muoversi all’interno di fantocci riempiti di acqua. Con i RCF quest’operazione deve essere eseguita in maniera differente poiché, in primo luogo, alcuni modelli di film radiocromici non sono impermeabili e reagiscono in presenza di acqua. Quindi per acquisire queste curve di Bragg attraverso film radiocromici si possono seguire, principalmente, tre vie alternative:

1. Utilizzare uno stack di film radiocromici;
2. Utilizzare spessori di PMMA per definire la profondità a cui effettuare la misura e posizionare un film radiocromico dopo di essi;
3. Combinare entrambe le precedenti configurazioni.

La prima configurazione è sicuramente la più rapida, perché svolta in un unico irraggiamento, richiede però un numero notevole di film radiocromici. Il lato negativo è che, se lo strato morto presente nel tipo di RCF utilizzato ha uno spessore rilevante si corre il rischio di ottenere una scarsa risoluzione spaziale nella regione del picco di Bragg. La seconda configurazione è la più dispendiosa in termini di tempo ma sicuramente la più accurata, soprattutto se si utilizzano spessori di PMMA certificati. Tale configurazione prevede l’irraggiamento di un film radiocromico alla volta posto ad ogni irraggiamento dietro uno spessore di PMMA via via crescente. Con questo metodo è possibile ottenere, soprattutto nella regione del picco, punti sperimentali ad intervalli spaziali dell’ordine della decina di micron, in particolare in questo lavoro sono stati utilizzati spessori da 50 µm. In entrambi i casi si devono convertire gli spessori di PMMA e dei vari strati del RCF in spessore equivalente in acqua in modo tale da poter poi confrontare le curve così ottenute con quelle relative alla camera Markus; il procedimento che porterà al calcolo del fattore di conversione sarà descritto nel paragrafo seguente.

4.4.2.1 Fattore di conversione spessore RCF in spessore acqua equivalente

Prima di eseguire le misure di dose in profondità è necessario determinare lo spessore equivalente in acqua di ogni singolo strato del RCF e di PMMA così da poter poi confrontare i risultati ottenuti con quelli ottenuti con la camera Markus. A tale scopo viene utilizzata la seguente formula:
spessore_A = \frac{spessore_B}{densa_{A} \cdot \text{fattore di conversione}} \quad 4.5

dove con l’indice A e B vengono indicati, in generale, due materiali differenti e il fattore di correzione dipende sia dal tipo di fascio utilizzato che dal tipo di materiale su cui il fascio incide. Questo fattore si calcola attraverso il seguente procedimento:

1. Prima si effettuano delle simulazioni con SRIM 2012 per ottenere i csda range16 che il fascio di protoni percorre nel materiale attraversato. In particolare, le composizioni atomiche percentuali dei vari strati di RCF sono quelle indicate nel capitolo 3.
2. Poi si moltiplica il csda range, espresso in cm, per la densità del materiale, espressa in g/cm3, ottenendo così il csda range espresso in g/cm2.
3. Infine facendo il rapporto tra il csda range espresso in g/cm2 del dato materiale con il csda range espresso in g/cm2 dell’acqua si ottiene il fattore di conversione. Nella Tabella 4.5 sono illustrati i fattori di conversione utilizzati nel presente lavoro di tesi.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Densità g/cm3</th>
<th>Fattore di conversione per i protoni</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>1.19</td>
<td>0.974</td>
</tr>
<tr>
<td>EBT3</td>
<td>1.35</td>
<td>0.937</td>
</tr>
<tr>
<td>Active layer EBT3</td>
<td>1.20</td>
<td>0.985</td>
</tr>
<tr>
<td>HD-810</td>
<td>1.35</td>
<td>0.930</td>
</tr>
<tr>
<td>Active layer HD-810</td>
<td>1.08</td>
<td>0.987</td>
</tr>
</tbody>
</table>

Tabella 4.5 – Fattori di conversione spessore RCF in spessore acqua equivalente.

Una volta calcolati i fattori di correzione si è potuta effettuare la conversione tra lo spessore dei singoli strati del RCF in spessore acqua equivalente e i risultati sono mostrati nella seguente tabella.

16 Il csda range indica lo spessore attraversato prima che la fluenza si riduca al di sotto del 50% oppure la profondità alla quale la parte distale del picco di Bragg assume l’80% del valore massimo.
Una volta noti i suddetti parametri è stato possibile procedere all’acquisizione delle curve di Bragg utilizzando entrambi i modelli di RCF citati nel capitolo 3 e sempre utilizzando il fascio di protoni da 62 MeV. Durante le misure, infine, si è pensato di realizzare poche misure nella regione del plateau ed il maggior numero possibile nella regione del picco, dove il gradiente di dose è maggiore. Di seguito sono riportati i risultati.

4.4.2.2 Risultati: Curve depth-dose HD-810 – Turno sperimentale ottobre

Il set-up sperimentale con cui sono state effettuate le misure di questo turno ha previsto l’utilizzo di spessori di PMMA via via crescenti e l’irraggiamento di un solo RCF alla volta fino al raggiungimento della regione del picco di Bragg. Una volta raggiunta tale regione si è preferito utilizzare uno stack di RCF così da irraggiare contemporaneamente tutti i film rimanenti. La dose inviata sui RCF modello HD-810 è stata di circa 40 Gy all’entrance così da ottenere sul picco una dose circa 4 volte superiore e non superare il limite dovuta alla saturazione del RCF. In particolare, i primi undici RCF sono stati irraggiati singolarmente dietro uno spessore di PMMA sempre crescente, mentre dal dodicesimo film in poi, dietro lo spessore di PMMA pari a 23.55 mm è stato posto lo stack di RCF.

Tutti i film sono stati scansionati 24 ore dopo l’esposizione e quindi è stato possibile ottenere la OD di ogni film attraverso il programma Picodose 8.0. Ad ognuno di essi è stato poi sottratto il valore di background pari a 0.04 e attraverso la seguente equazione è stato possibile convertire tale valore di densità ottica in dose espressa in Gray:

\[y = 674,73x^6 - 2337x^5 + 3053,3x^4 - 1775,2x^3 + 554,33x^2 + 115,48x - 0,0146 \]

dove con \(y \) è indicata la dose [Gy] e \(x \) indica il valore di netOD calcolato.
I valori di dose ottenuti sono stati normalizzati all’ingresso e confrontati con quelli ottenuti nelle stesse condizioni con la camera Markus. A tal proposito si mostra di seguito, in Figura 4.18, un grafico con i risultati ottenuti.

Figura 4.18 – Confronto picco acquisito con la camera Markus e quello acquisito con gli HD-810.

L’errore mostrato in Figura 4.18 risulta essere del 3,7% ed è stato stimato considerando l’incertezza derivante dalle misure eseguite in fase di calibrazione e da incertezze dovute alle condizioni in cui è stato scansionato il film.

Figura 4.19 – Andamento della sottostima di dose nel caso degli HD-810
Osservando la Figura 4.19, è possibile notare che il RCF, rispetto alla camera Markus, presenta una sottostima della dose nella regione in prossimità del picco di Bragg. L’andamento dell’efficienza del RCF può essere rappresentata attraverso lo studio della grandezza denominata efficienza relativa (ER) calcolata eseguendo il rapporto tra la dose letta attraverso la camera Markus e la dose ottenuta tramite i RCF. Dalla Figura 4.19 si può notare che l’efficienza è massima sino alla regione del picco di Bragg dove si ha un repentino crollo sino a raggiungere valori nella parte distale del picco del 20-30%.

A questo punto seguendo il ragionamento espresso nel paragrafo 3.2.6 è stato calcolato l’andamento del fattore di correzione \(g_{Q_0,Q_0} \) in funzione dell’energia residua del fascio di protoni ottenendo il seguente risultato.

![Figura 4.20 – Andamento del fattore di correzione in funzione dell’energia residua per gli HD-810.](image)

La curva, mostrata in Figura 4.20, dimostra che il RCF presenta una dipendenza dall’energia e quindi dal LET della particella incidente. L’errore mostrato è stato stimato sommando gli errori percentuali relativi alla dose letta attraverso la camera Markus e a quella letta ottenuta dai RCF. Osservando la curva si nota un aumento di tale fattore di correzione alle basse energie in prossimità del picco di Bragg dove il LET della particella incidente comincia a crescere. Questo si traduce in un minore annerimento determinato dagli effetti di saturazione che si verificano all’interno del RCF.

Questa curva è stata utilizzata per correggere la sottostima di dose che il RCF HD-810 mostra nella regione del picco di Bragg con il seguente risultato.
L’errore mostrato in Figura 4.21, considerando la formula 3. 4, viene quindi considerato come somma degli errori percentuali attribuiti al fattore di correzione $\Gamma_{g_{18}}$ e ai valori di dose calcolati a partire dall’annerimento dei film radiocromici.

4.4.2.3 Risultati: Curve depth-dose EBT3 – Turno sperimentale ottobre

Il set-up sperimentale è simile a quello utilizzato nel precedente paragrafo 4.4.2.2 e quindi anche in questo caso, per variare la profondità di misura, sono stati utilizzati prima gli spessori di PMMA e poi è stato utilizzato insieme al PMMA uno stack di RCF. La dose inviata su questo modello di RCF differisce da quella precedente ed è stata di circa 70 cGy all’entrance così da ottenere, anche in questo caso, sul picco una dose circa 4 volte superiore tale da non superare il limite dovuto alla saturazione del RCF. I primi undici RCF, anche in questo caso, sono stati irraggiati singolarmente dietro uno spessore di PMMA sempre crescente, come indicato nella precedente tabella, mentre dal dodicesimo in poi dietro uno spessore di 23.67 mm di PMMA è stato posto lo stack di RCF. Tutti i film sono stati scansionati 24 ore dopo l’esposizione e quindi è stato possibile ottenere la OD di ogni film attraverso il programma Picodose 8.0. Ad ognuno di essi è stato poi sottratto il valore di background pari a 0.227 e attraverso la seguente equazione è stato possibile convertire tale valore di densità ottica in dose espressa in Gray:
\[y = 877.09x^3 + 451.63x^2 + 479.28x + 0.4638 \]

Dove con \(y \) è indicata la dose [cGy] e \(x \) indica il valore di \(\text{net}OD \) calcolato.

Anche in questo caso i valori di dose ottenuti sono stati normalizzati all’ingresso e sono stati confrontati con quelli ottenuti nelle stesse condizioni con la camera Markus. A tal proposito si mostrano nella seguente Figura 4.22 i risultati ottenuti.

![Figura 4.22 – Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3.](image)

Anche in questo caso, dalla Figura 4.22, è possibile notare che il RCF, rispetto alla camera Markus, presenta una sottostima della dose nella regione in prossimità del picco di Bragg. L’errore mostrato in Figura 4.22 risulta essere del 4,3% ed è stato stimato considerando l’incertezza derivante dalle misure eseguite in fase di calibrazione e da incertezze dovute alle condizioni in cui è stato scansionato il film.

Di seguito, in Figura 4.23, si riporta il grafico dell’efficienza relativa del film radiocromico in funzione dello spessore attraversato nel materiale e si nota che anche nel caso degli EBT3 l’efficienza è del 100% sino a energie residue del fascio di qualche MeV dove subisce una rapida caduta sino a percentuali del 60%.
A questo punto seguendo sempre il ragionamento espressso nel paragrafo 3.2.6 è stato calcolato l’andamento del fattore di correzione $\Gamma_{g_{185}h_{g_{3018}}}\Gamma_{g_{3018}}\Gamma_{g_{3116}}$ in funzione dell’energia residua del fascio di protoni ottenendo il seguente risultato.

Dalla Figura 4.23 e dalla Figura 4.24 si può notare, quindi, che anche per questo modello di RCF si ha la stessa dipendenza della risposta dal LET della particella incidente rispetto al caso discusso in precedenza nel paragrafo 4.4.2.2. L’errore mostrato è stato stimato sommando gli errori percentuali relativi alla dose letta attraverso la camera Markus e a quella letta ottenuta dai RCF.
Quindi, la curva di Figura 4.24 è stata utilizzata per correggere la sottostima di dose che il RCF EBT3 mostra nella regione del picco di Bragg con il risultato illustrato in Figura 4.25.

Figura 4.25 - Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3 dopo aver applicato i fattori di correzione $\Gamma_{g185\Delta}^\Gamma_{g218\Delta}$ e $\Gamma_{g3018}\Gamma_{g3116}$.

L’errore mostrato in Figura 4.25, considerando la formula 3.4, viene quindi considerato come somma degli errori percentuali attribuiti al fattore di correzione $g_{Q,0}$ e ai valori di dose calcolati a partire dall’annerimento dei film radiocromici.

4.4.2.4 Risultati: Curve depth-dose EBT3 – Turno sperimentale dicembre

Il set-up sperimentale con cui sono state effettuate le misure in questa sessione è stato differente rispetto ai precedenti in quanto in questo turno si è preferito non eseguire misure con RCF disposti in stack ma è stato previsto solo l’utilizzo di spessori di PMMA. La dose inviata sui RCF, in questo caso, è stata di circa 80 cGy all’ingresso.

In questo caso tutti i RCF irraggiati sono stati posti dietro uno spessore di PMMA; in particolare si è cercato di aumentare la risoluzione spaziale in corrispondenza del picco di Bragg utilizzando spessori da 50 µm.

Questa volta i film sono stati scansionati 60 ore dopo l’esposizione, per verificare se il modello di RCF in questione continuasse o meno ad aumentare il suo valore di densità ottica anche oltre le 24 ore. Poi si proceduto all’elaborazione dei film misurando con il programma Picodose 8.0 Pro il valore di OD e una volta sottratto il fondo si è ottenuto il valore di dose assorbita dal film attraverso la seguente equazione di calibrazione:
\[y = 936,89 x^2 + 434,56 x^2 + 468,61 x - 0,4594 \]

4.8

dove con \(y \) è indicata la dose [cGy] e \(x \) indica il valore di netOD calcolato.

I valori dose ottenuti sono stati, prima, normalizzati al primo valore ottenuto nella regione dell’entrance e, poi, sono stati confrontati con quelli ottenuti nelle stesse condizioni con la camera Markus. A tal proposito si mostrano nella seguente Figura 4.26 i risultati ottenuti.

![Figura 4.26 – Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3.](image)

Anche in questo caso si nota che il RCF, rispetto alla camera Markus, presenta una sottostima della dose nella regione in prossimità del picco di Bragg, come mostrato in Figura 4.26, ed anche in questo caso è possibile stimare questa differenza in termini di efficienza relativa. Come si può notare dalla Figura 4.27 tale efficienza è del 100% fino a che il fascio non raggiunge la profondità di penetrazione nel mezzo in cui si manifesta il picco di Bragg dove l’efficienza si riduce sino al 40%.
A questo punto seguendo il ragionamento espresso nel paragrafo 3.2.6 è stato calcolato l’andamento del fattore di correzione g_{Q_0} in funzione dell’energia residua del fascio di protoni ottenendo i seguenti risultati.

L’andamento del fattore di correzione sarà quello descritto dal seguente grafico.

La curva, mostrata in Figura 4.28, è stata utilizzata per correggere la sottostima di dose che il RCF EBT3 mostra nella regione del picco di Bragg con il seguente risultato.
Figura 4.29 - Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3 dopo aver applicato i fattore di correzione $\Gamma_{g_218\hbar}$ $\Gamma_{g_21+3\hbar}$ Γ_{g_2++}.

4.4.2.5 Risultati: Confronto tra g_{Q,Q_0} degli EBT3.

Dato che con gli EBT3 è stato possibile compiere due misure del picco di Bragg non modulato si può effettuare un confronto tra le curve del fattore di correzione g_{Q,Q_0}.

Figura 4.30 – Confronto tra le curve di g_{Q,Q_0} ottenute nei diversi turni sperimentali con gli EBT3.
Dalla Figura 4.30 si può notare un notevole accordo nell’andamento di queste due curve entro gli errori sperimentali. In particolare si nota come sino ad energie residue maggiori di 10 MeV questo coefficiente assuma un valore pressoché unitario mentre quando l’energia residua si riduce al di sotto di questa soglia e si entra nella regione del picco di Bragg si ha un incremento del valore di questo fattore di correzione sino ad un valore massimo pari a 1,77 ad un’energia residua calcolata di 60 keV.

In definitiva, dall’osservazione dei dati sperimentali sin qui ottenuti si può affermare che è necessario applicare una correzione al valore di dose letto a partire dal RCF se essi vengono irraggiati con fasci che presentano fattori di qualità differenti da quelli utilizzati in fase di calibrazione. Questo è reso necessario dal fatto che il LET del fascio cresce al diminuire dell’energia residua e che il film radiocromico presenta effetti di saturazione sempre più evidenti all’aumentare del valore del LET. Quindi, considerato che un fascio di particelle che penetra in un materiale degrada la propria energia dal valore di incidenza a zero in maniera continua, la correzione suddetta è di primaria importanza e rappresenta, di certo, la procedura più veloce e, al contempo, accurata. Effettuare una calibrazione per ogni valore di energia implicherebbe, infatti, un dispendio di tempo e un quantitativo di film elevato.
CAPITOLO 5 – SPETTROSCOPIA DI UN FASCIO DI PROTONI POLICHROMATICO.
Una delle problematiche legate all’accelerazione laser-target, come già descritto in precedenza, è che il fascio prodotto presenta una spread energetico del 100%. Quindi è necessario effettuare misure accurate degli spettri energetici al fine di caratterizzare tali fasci e selezionarli in energia per eventuali applicazioni cliniche.

Questi fasci sono, inoltre, caratterizzati da elevatissimi ratei di dose (fino a 10^9 Gy/s), che rendono inutilizzabili le tradizionali tecniche di misura degli spettri energetici.

I film radiocromici (RCF), grazie alla loro risposta indipendente dal rateo di dose, come descritto nel paragrafo 3.2.3, si prestano bene a misure di questo tipo se disposti in configurazione stack e vengono spesso utilizzati in esperimenti con acceleratori laser-target [3] per rivelare protoni con un’alta risoluzione spaziale e per discriminare energia. Lo stack è assemblato in maniera tale da far passare il fascio prima attraverso un sottile fogliolino di alluminio ($\approx 10\mu$m), per bloccare altre eventuali specie ioniche, poi attraverso film radiocromici modello HD-810, sui quali far arrestare le particelle cariche pesanti (prevalentemente protoni), ed infine attraverso strati di EBT3 per rivelare elettroni e raggi X. In particolare questi ultimi strati sono utilizzati per sottrarre eventuali contributi di dose fornita ai RCF precedenti. Lo spettro dei protoni incidenti è ottenuto attraverso una procedura di deconvoluzione con algoritmi sviluppati ad hoc e validati in configurazioni “di riferimento”, per poi essere impiegati nelle facility laser.

Uno degli obiettivi del presente lavoro di tesi consiste nel realizzare tali procedure e testarle presso i LNS con un fascio di protoni accelerato dal ciclotrone superconduttore (CS), di cui si riesce a riprodurre accuratamente, attraverso codici di simulazione Monte Carlo, le condizioni di trasporto.

Infatti, nel corso di questo lavoro di tesi sono state eseguite delle simulazioni con il codice GEANT4 (abbreviazione di GEometry ANd Tracking). Con tale software è stato possibile simulare l’intera linea di trasporto e tutti gli elementi passivi che il fascio attraversa nel suo cammino in aria nella sala in cui sono state svolte le misure. Tali simulazioni in un primo momento sono state confrontate con i risultati ottenuti con un dosimetro di riferimento, quale la camera Markus. Una volta verificate, sono state utilizzate per confrontare i risultati sperimentali ottenuti con i RCF, in particolare gli spettri energetici.
Figura 5.1 – Rappresentazione della linea CATANA simulata con GEANT4.

Inoltre i RCF, e in particolare, il metodo spettroscopico sviluppato, oltre ad essere utilizzati per una caratterizzazione del fascio, possono essere utilizzati insieme ad una Faraday cup per una dosimetria assoluta di fasci laser-driven. Lo sviluppo di queste tecniche è infatti uno degli aspetti più importanti del progetto ELIMED, perché le tecniche di dosimetria assoluta impiegate con fasci convenzionali di protoni non possono essere utilizzate con fasci accelerati per interazione laser target. Richter et al. hanno sviluppato, caratterizzato e calibrato un sistema dosimetrico integrato utilizzabile anche con fasci di protoni accelerati da laser. Tale sistema prevede l’utilizzo dei RCF per ottenere informazioni riguardanti la dimensione dello spot del fascio, la distribuzione spaziale di dose e di energia e lo spettro energetico. Quest’ultima è un’informazione cruciale per la calibrazione della Faraday cup ed il calcolo della dose assoluta [38].

Al fine di riprodurre, presso i LNS, condizioni simili a quelle che si hanno nel caso di fasci di protoni accelerati per interazione laser-target, sono stati impiegati alcuni accorgimenti, che hanno consentito di ottenere, a partire da fasci monoenergетici di protoni accelerati dal CS, fasci di protoni con ampi spread energetici (configurazione con modulatore). Inoltre, un sistema passivo di degradazione dell’energia è stato ideato e realizzato allo scopo di avere, come per i fasci laser-driven, anche una distribuzione spaziale dell’energia non omogenea (configurazione con cuneo). Con tale sistema è stato possibile ottenere un diverso
contributo, in termini di energia cinetica, a seconda delle differenti porzioni dello spot del fascio.

Nei paragrafi seguenti saranno descritti i metodi utilizzati ai LNS per ottenere un fascio di protoni non monoenergetico a partire da quello monocromatico prodotto dal ciclotrone superconduttore. Successivamente verranno descritte le procedure e gli algoritmi usati per le misure di spettroscopia. Il fattore di correzione descritto nel paragrafo 3.2.6 e calcolato, rispettivamente, nei paragrafi 4.4.2.2, 4.4.2.3 e 4.4.2.4 verrà applicato per i diversi casi considerati, al fine di stimare correttamente la fluenza dei protoni.

I risultati ottenuti saranno confrontati con quelli ricavati da simulazioni Monte Carlo con il codice GEANT4 al fine di verificare e supportare le misure sperimentali effettuate.

5.1 Set-up sperimentale

Le misure spettroscopiche eseguite sempre all’interno della sala CATANA. Per ottenere un fascio non monoenergetico, a partire da fasci tipicamente accelerati dal CS dei LNS, sono state utilizzate, come già detto, due metodologie. La prima ha previsto l’utilizzo di un modulatore rotante tipicamente adoperato in adroterapia per ottenere lo SOBP. Nel secondo caso è stato utilizzato un cuneo che conferisce al fascio in uscita uno spread energetico con una certa dipendenza spaziale, ed in particolare l’energia sarà massima al centro dello spot del fascio e diminuirà all’aumentare del raggio. Entrambi gli elementi, realizzati in PMMA, sono stati progettati e costruiti presso i LNS.

5.1.1 Modulatore

La prima metodologia è consistita nell’utilizzare un modulatore rotante, denominato 01002, con il quale è stato possibile variare istante per istante lo spessore di PMMA attraversato dal fascio allo scopo di creare lo spread energetico richiesto. Inoltre, con esso è stato possibile ottenere una regione di pianerottolo nel SOBP a profondità compresa tra 18,90 mm e 29,80 mm in acqua. Con questo modulatore sono stati utilizzati entrambi i modelli di Gafchromic.

Lo stack di RCF era composto da 92 film di EBT3. Il primo film è stato posizionato perpendicolarmente all’asse del fascio e tutti gli altri film sono stati posti a seguire. In questa configurazione è stato utilizzato un collimatore di 20 mm ed è stata inviata una dose pari a 155 cGy, calcolata nel punto di normalizzazione scelto al centro del SOBP.

Lo stack di HD-810, invece, era composto da 110 RCF e il primo anche in questo caso è stato posizionato perpendicolarmente alla direzione di propagazione del fascio e tutti gli altri a
Capitolo 5

seguire. Il collimatore era di 20 mm ed è stata inviata sullo stack una dose pari a 120 Gy, sempre calcolata nel punto di normalizzazione al centro del SOBP.

Figura 5.2 – Configurazione sperimentale nel caso del modulatore.

Come già accennato, utilizzare i RCF in configurazione stack rende possibile eseguire misure di spettri energetici. Infatti, i protoni con energia più bassa verranno fermati nei primi strati mentre quelli più energetici saranno più penetranti; ad ogni RCF potrà quindi essere associato un intervallo di energia, corrispondente a quella che i protoni devono avere per generare un picco di Bragg a tale profondità. La frazione di energia depositata dai protoni più energetici (quindi più penetranti) sarà successivamente sottratta in maniera accurata e pesata, così da ottenere per ogni RCF solo l’energia depositata dai protoni nella regione del picco a quella specifica profondità. La sovrapposizione delle traiettorie di due protoni aventi energie molto differenti è quindi ininfluenza ai fini della spettroscopia.

I RCF sono quindi degli ottimi candidati per ricostruire sia la distribuzione spaziale che energetica del fascio dei protoni.

5.1.2 Cuneo

Il cuneo è un parallelepipedo di PMMA di 28 mm di spessore su cui è stato precedentemente scavato un tronco di cono presentante da un lato un foro di 34 mm di diametro e dall’altro un foro di 5 mm di diametro, come mostrato nella Figura 5.5.

Figura 5.3 - Configurazione sperimentale nel caso del cuneo.
Con questa configurazione il fascio di protoni, lungo il suo tragitto, attraversa spessori di PMMA variabili in funzione del raggio prima di giungere allo stack di RCF ed in questo modo quindi il fascio acquista un certo spread energetico diverso a seconda della posizione nello spot. Lo stack di RCF, composto da 85 film di EBT3 di 3x3 cm², è stato posizionato alle spalle del cuneo in maniera tale da far coincidere il primo film con l’isocentro. Infine durante l’irraggiamento è stato utilizzato un collimatore da 20 mm ed è stato inviata sui film una dose pari a 80 cGy.

![Figura 5.4 – Configurazione sperimentale simulata con GEANT4 nel caso del cuneo.](image)

5.1.1.1 Progettazione del cuneo

Il cuneo è stato progettato e realizzato appositamente presso i LNS. Per la progettazione sono stati considerati diversi fattori tra cui il diametro del collimatore finale presente in sala CATANA, l’energia massima dei protoni accelerati dal ciclotrone e la loro distribuzione spaziale all’isocentro. Tenendo conto di questi fattori ed eseguendo calcoli di perdita di energia attraverso programmi, quali SRIM 2012 o LISE++, è stato realizzato in Autocad il seguente disegno.
Figura 5.5 – Vista frontale e laterale del cuneo realizzato presso i LNS. La freccia blu indica la direzione ed il verso del fascio che incide sul cuneo.

In Figura 5.6 è mostrata una foto del cuneo.

Figura 5.6 – Foto del cuneo

5.2 Simulazioni con TRIM e SRIM.

SRIM è un programma utilizzabile su piattaforme Windows con il quale è possibile calcolare lo stopping power e il range degli ioni nella materia. TRIM è un programma incluso in SRIM con il quale è possibile ottenere molte informazioni riguardo le proprietà di un fascio di ioni.

Con SRIM è stato possibile simulare l’interazione tra il fascio di protoni e il materiale che costituisce il RCF modello EBT3. Per eseguire questa simulazione è stato necessario inserire nel programma la composizione atomica media percentuale già citata nel paragrafo 3.2.1.2 e un range di energia compreso tra 10 keV e 60 MeV. I risultati ottenuti sono stati elaborati in maniera tale da attribuire un intervallo energetico ben preciso ad ogni profondità a cui si
trovano gli strati attivi di ogni film radiocromico dello stack, come accennato alla fine del paragrafo 5.1.1.

Con TRIM sono state calcolate tutte le curve di Bragg relative ad ogni bin energetico corrispondente ad ogni RCF nello stack.

Figura 5.7 – Andamento delle curve di Bragg all'aumentare dell'energia del fascio incidente.

Tutte le informazioni ricavate attraverso questi programmi saranno utilizzate nell’algoritmo di deconvoluzione descritto nel paragrafo seguente 5.3.

5.3 Analisi dati

Per l’analisi dei RCF usati per la spettroscopia è stato utilizzato un algoritmo di elaborazione che consiste nella deconvoluzione dello spettro dei protoni a partire dall’energia che essi depositano lungo il loro percorso all’interno dello stack di RCF, come sarà descritto nel paragrafo 5.3.1.

Durante l’analisi dei RCF è stato possibile utilizzare la stessa curva di calibrazione usata precedentemente nel paragrafo 4.4.1, poiché per la spettroscopia sono stati utilizzati RCF appartenenti allo stesso lotto di produzione di quelli utilizzati in fase di calibrazione. La digitalizzazione dei film irraggiati, sia con il metodo del cuneo che con quello del modulatore, è stata eseguita 60 ore dopo l’irradiazione seguendo il procedimento descritto in precedenza nel paragrafo 3.2.7. Una volta ottenute le immagini in formato .tiff è stato possibile utilizzare il programma scritto in ambiente MATLAB descritto nel paragrafo 5.3.2.

5.3.1 Algoritmo per la deconvoluzione

L’algoritmo utilizzato per eseguire la deconvoluzione è composto da varie fasi. La prima consiste nella conversione delle immagini dei RCF, scansionate e salvate in formato .tiff, in
matrici leggibili con il software MATLAB. Ogni elemento di essa è un numero compreso tra 0 e 65535, corrispondente al pixel value dell’immagine. Successivamente si esegue la conversione di ogni elemento della matrice in valori di densità ottica (OD) e ad ognuno di essi sarà sottratto il valore di $OD_{\text{background}}$. I valori così ottenuti rappresentano i valori di densità ottica netta (netOD) di ogni pixel dell’immagine originaria e saranno, in seguito, trasformati in valore di dose espressa in gray [Gy], attraverso la curva di calibrazione. Il passo successivo consiste nel delineare su ogni immagine una regione di interesse (ROI) di forma circolare di dimensione uguale allo spot del fascio, in modo da eliminare la regione che non interessa al fine del calcolo della dose, compresi i markers utilizzati per l’identificazione e l’orientamento del film radiocromico. Fatto ciò, si integra la dose rilasciata dal fascio all’interno della ROI e la si moltiplica per la densità dello strato attivo ottenendo così l’energia trasferita dai protoni nello strato attivo del singolo RCF. Si otterrà così l’energia totale depositata dal fascio per unità di profondità nello stack di RCF denotata come $\frac{dE}{dx}_{\text{RCF}}$ ed il valore sarà espresso in J/cm.

Per semplicità da adesso in poi i film costituenti lo stack saranno denominati con numeri crescenti da 1 a n, dove con il numero 1 sarà identificato il primo film dello stack a cui è associato il bin meno energetico e con n sarà indicato l’ultimo film a cui corrisponde il bin ad energia più alta. Quindi, dato che i protoni depositano una frazione della propria energia in tutti gli strati di RCF che attraversano prima del loro arresto, deve essere eseguita una sottrazione pesata dei contributi di dose che le varie curve di Bragg rilasciano su tutti i RCF precedenti a quello relativo al picco considerato. Questo procedimento è stato eseguito a ritroso a partire dall’ultimo film per tutti i film dello stack e ha permesso di ottenere, per ogni RCF, solo il valore dell’energia rilasciata dalla curva di Bragg nella regione del picco. Inoltre, tale valore è stato corretto con il fattore di correzione g_{Q_0, Q_u} precedentemente calcolato (paragrafi 4.4.2.2, 4.4.2.3 e 4.4.2.4) ed è stato ottenuto così il valore $\frac{dE}{dx}_{\text{pesato}}_{\text{RCF}}$.
Figura 5.8 – Deconvoluzione grafica fattori di peso. Al valore di energia assorbita dal RCF che si trova in corrispondenza del picco di Bragg denominato A bisogna sottrarre i contributi dei picchi più energetici e quindi dei picchi indicati in figura con le lettere B, C, D ed E. Quindi ad esempio per calcolare il fattore di peso del picco B sull’energia depositata nel punto A bisogna calcolare il rapporto tra E_{dep,B}(x)/E_{dep,B}(peak), dove E_{dep,B}(x) è il contributo che il picco B fornisce nel punto A e E_{dep,B}(peak) è il valore della ionizzazione massima del picco B [2].

Per ottenere i pesi utilizzati per la sottrazione dei vari contributi, sono state utilizzate le curve calcolate con SRIM. Tramite queste simulazioni è stata calcolata l’energia rilasciata da ogni singola curva di Bragg su ogni singolo RCF; questi valori di energia sono stati poi normalizzati rispetto al valore massimo ottenuto sul picco della rispettiva curva di Bragg e ciò ha permesso di ottenere i fattori di peso richiesti, come mostrato in Figura 5.8.

Il programma SRIM, inoltre, permette di ottenere il valore dell’energia depositata dal fascio in funzione dello spessore di materiale attraversato in unità di eV/(Å·pr)\(^{17}\) perciò tale valore deve essere convertito in J/(cm·pr) e sarà denotato come \(\frac{dE}{dx \cdot pr}_{SRIM}^{pesato}\). Dal rapporto tra il valore ottenuto attraverso misure sperimentali, \(\frac{dE}{dx \cdot pr}_{RCF}^{pesato}\), ed il valore derivante dalla simulazione eseguita con SRIM, \(\frac{dE}{dx \cdot pr}_{SRIM}\), si ottiene il numero di protoni che ha depositato la propria energia nei vari strati attivi dei RCF dello stack e quindi si ottiene lo spettro energetico.

5.3.2 Programma di elaborazione RCF scritto in ambiente MATLAB

Il programma, scritto appositamente per l’elaborazione delle immagini dei RCF scansionate, è suddivisibile in due distinte sezioni: una parte riguarda il calcolo della curva di calibrazione

\(^{17}\) eV/(Å·pr): indica l’energia depositata per unità di spessore attraversato da un singolo protone.
e l’altra la procedura con cui si calcola lo spettro dei protoni. Il programma, una volta lanciato, chiede di inserire il numero di RCF utilizzati per eseguire la calibrazione, la risoluzione di scansione espressa in dpi ed, inoltre, il numero di RCF utilizzati per ricostruire lo spettro dei protoni.

![Image](image1)

Figura 5.9 – Schermata iniziale del programma per la spettroscopia scritto in ambiente Matlab.

In seguito viene richiesto di indicare la cartella in cui si trovano i file .tiff riguardanti la calibrazione del modello di RCF utilizzato. A questo punto il programma restituisce un’immagine in cui viene mostrata la curva di calibrazione ed una finestra in cui viene richiesto di selezionare la cartella dove prelevare le immagini da utilizzare per l’analisi spettroscopica.

![Image](image2)

Figura 5.10 – Curva di calibrazione e fit polinomiale ottenuti con MATLAB.

Dopo una rapida elaborazione, il programma restituisce i grafici riguardanti l’andamento del fattore di correzione in funzione dell’energia residua, l’energia totale rilasciata dal fascio su ogni singolo RCF, l’energia rilasciata su ogni RCF nella sola regione del picco di Bragg dopo aver applicato il fattore di correzione $g_{Q,0}$ della sottostima di dose ed, infine, lo spettro dei protoni.

5.4 Risultati

5.4.1 HD-810 - Modulatore

Di seguito saranno riportati i risultati ottenuti dall’elaborazione delle informazioni ricavate dai 98 RCF HD-810 disposti in configurazione stack irraggiati con un fascio di protoni.
modulato con un’energia massima di 62 MeV/A, accelerato dal ciclotrone superconduttore presente ai LNS – INFN di Catania. L’acquisizione in formato .tif dei RCF è stata effettuata 60 h dopo l’irraggiamento per consentire la stabilizzazione del valore di densità ottica di ogni film. Il passo successivo è stato quello del calcolo della dose assorbita dallo strato attivo di ogni singolo RCF a partire dal valore di densità ottica netta letto su ognuno di essi. A tale scopo, si è seguito lo stesso procedimento descritto nel paragrafo 4.2.2 nel caso dell’acquisizione di un picco di Bragg non modulato. I valori di dose così ottenuti sono stati normalizzati all’ingresso e confrontati sia con il profilo di dose in profondità misurato attraverso la camera Markus Advanced e sia con il profilo di dose in profondità ottenuto attraverso una simulazione eseguita utilizzando GEANT4, ottenendo il risultato mostrato in Figura 5.11.

L’errore mostrato in Figura 5.11 risulta essere del 3,7% ed è stato stimato considerando l’incertezza derivante dalle misure eseguite in fase di calibrazione e le incertezze legate alla procedura di scansione del film. Dal confronto, mostrato in Figura 5.11, tra la dose misurata con la camera Markus Advanced e la dose ottenuta utilizzando i RCF è possibile notare una sottostima di dose nella regione del pianerottolo del SOBP del 7% circa all’inizio del pianerottolo e del 13% nella parte distale dello SOBP. Anche in questo caso, come nel caso del picco puro descritto nel paragrafo 4.4.2, sarà necessario applicare il fattore di correzione $g_{0.00}$ (paragrafo 3.2.6) per correggere tale sottostima. Inoltre, si può notare
come la simulazione eseguita con GEANT4 riproduca fedelmente l’andamento del SOBP e che quindi, tale applicativo di simulazione, una volta validato, può essere utilizzato come riferimento per confrontare altre quantità di interesse. In particolare il suddetto applicativo è stato utilizzato in entrambe le configurazioni (modulatore e cuneo) per calcolare lo spettro energetico all’isocentro, dove è stato posto lo stack di film. Questo consente di confrontare i risultati delle misure spettroscopiche realizzate mediante i RCF con le predizioni delle simulazioni e valutare, in conclusione, l’affidabilità e l’accuratezza delle misure effettuate.

A questo punto è stato utilizzato il programma scritto in ambiente MATLAB, descritto nel paragrafo 5.3.2, seguendo l’algoritmo per la deconvoluzione, trattato nel paragrafo 5.3.1. Il passo successivo è stato il calcolo dell’energia totale trasferita su ogni film e, a partire da questa informazione, applicando la sottrazione pesata descritta nel paragrafo 5.3.1, si è ottenuta l’energia depositata su ogni film radiocromico solo nella regione del picco di Bragg; il risultato è mostrato in Figura 5.12.

![Figura 5.12 – Energia trasferita su ogni HD-810 dal fascio di protoni considerando solo l’energia rilasciata nella regione del picco di Bragg.](image)

L’errore mostrato in Figura 5.12 risulta essere del 10,3% ed è stato stimato considerando l’incertezza sulla misura della dose e sul valore del fattore di correzione. A questo punto, utilizzando i risultati delle simulazioni eseguite con SRIM, è stato possibile calcolare lo spettro energetico dei protoni all’ingresso dello stack (Figura 5.13).
L’errore mostrato in Figura 5.13 è del 14% ed è dovuto alle incertezze stimate per l’energia trasferita (Figura 5.12) e a quelli derivanti dalla statistica di Poisson \(1/\sqrt{N}\), cui è soggetto il risultato delle simulazioni eseguite con SRIM. Inoltre, la scelta di mostrare solo l’intervallo di energia compreso tra 40 e 60 MeV è stata fatta per rendere il grafico mostrato maggiormente comprensibile.

I risultati ottenuti sono stati confrontati con lo spettro ottenuto con una simulazione eseguita con GEANT4. Dal confronto si può notare come vi sia un buon accordo tra le due curve, entro gli errori sperimentali (Figura 5.14).
5.4.2 EBT3 – Modulatore

Di seguito saranno riportati i risultati ottenuti dall’elaborazione delle informazioni ricavate dagli 85 RCF EBT3 irraggiati nella medesima configurazione usate per i RCF HD-810 descritta nel precedente paragrafo. I RCF sono stati disposti in configurazione stack e irraggiati con un fascio di protoni da 62 MeV, accelerato dal ciclotrone superconduttore presente ai LNS – INFN di Catania, modulato con il modulatore denominato 01002.

Anche in questa configurazione, l’acquisizione in formato .tif dei RCF è stata effettuata 60 h dopo l’irraggiamento per consentire la stabilizzazione del valore di densità ottica di ogni film. Seguendo la stessa procedura descritta nel paragrafo precedente, si sono ottenuti i valori di dose in funzione della profondità in acqua, i quali sono stati confrontati, anche in questo caso con il profilo di dose in profondità misurato attraverso la camera Markus Advanced e con le predizioni della simulazione GEANT4 (Figura 5.15).
L’errore mostrato in Figura 5.15 risulta essere del 4,3% ed è stato stimato considerando l’incertezza derivante dalle misure eseguite in fase di calibrazione e le incertezze legate alla procedura di scansione del film. Anche nel caso degli EBT3, se si osserva il confronto, mostrato in Figura 5.15, tra la dose letta attraverso la camera Markus Advanced e la dose calcolata utilizzando i RCF, è possibile notare che la sottostima di dose nella regione del pianerottolo del SOBP è di circa il 7% all’inizio del pianerottolo e del 12% nella parte distale dello SOBP. Anche in questo caso quindi sarà, in seguito, necessario applicare il fattore di correzione $\gamma_{Q_{o}Q_{o}}$, descritto nel paragrafo 3.2.6, per correggere la sottostima.

Si nota, però, che a differenza del modello HD-810, analizzato nel paragrafo 5.4.1, i risultati sono caratterizzati da maggiori fluttuazioni. Questo può essere attribuito al fatto che il modello in questione è molto sensibile all’orientazione con cui viene scansionato, come detto nel paragrafo 3.2.7, e questo fattore introduce sulla misura un’incertezza che può essere anche del 2,0% in più rispetto agli HD-810 [2].

A questo punto è stato utilizzato il programma scritto in ambiente MATLAB, descritto nel paragrafo 5.3.2, seguendo l’algoritmo per la deconvoluzione, descritto nel paragrafo 5.3.1. Quindi è stata calcolata l’energia totale trasferita su ogni film e, a partire da questa informazione applicando la sottrazione pesata descritta nel paragrafo 5.3.1, è stato possibile calcolare l’energia depositata su ogni film radiocromico solo nella regione del picco di Bragg; il risultato ottenuto è mostrato in Figura 5.16.
Figura 5.16 - Energia trasferita su ogni EBT3 dal fascio di protoni considerando solo l’energia rilasciata nella regione del picco di Bragg.

L’errore mostrato Figura 5.16 risulta essere del 10,9% ed è stato stimato considerando l’incertezza sulla misura della dose e sul valore del fattore di correzione. A questo punto, utilizzando i risultati delle simulazioni eseguite con SRIM, è stato possibile calcolare lo spettro energetico dei protoni che attraversato lo stack.

Figura 5.17 - Spettro energetico dei protoni che raggiungono lo stack di RCF EBT3
L’errore in Figura 5.17 è del 15% ed è dovuto alle incertezze stimate nel caso della Figura 5.16 e a quello derivante dalla statistica di Poisson ($1/\sqrt{N}$) cui è soggetto il risultato delle simulazioni eseguite con SRIM.

Confrontando i risultati con lo spettro ottenuto con la simulazione GEANT4 si può notare come vi sia, anche in questo caso, un buon accordo tra le due curve, come si può notare osservando la Figura 5.18.

![Figura 5.18 - Confronto dello spettro ottenuto sperimentalmente con gli EBT3 (punti rossi) con quello ottenuto tramite simulazione GEANT4 (linea continua blu).](image)

Da notare che rispetto al caso precedente, in cui sono stati utilizzati gli HD-810, la risoluzione energetica è inferiore, ciò è dovuto al fatto che lo spessore morto negli EBT3 è più del doppio di quello presente nel modello HD-810 ed in particolare è di 1,450 MeV per i primi e di 0,850 MeV per i secondi.

5.4.3 Cuneo

L’uso del cuneo, come accennato nel paragrafo 5.1, rappresenta in modo più realistic o la distribuzione spaziale ed energetica di un fascio di protoni laser-driven. In questa configurazione, lo spessore di PMMA che il fascio deve attraversare lungo il cuneo cresce all’aumentare del raggio e ciò determina quindi uno spot in cui i protoni con l’energia
massima si troveranno al centro mentre quelli con energia via via decrescente si troveranno a raggi maggiori.

In seguito alla digitalizzazione dei film, eseguita anche in questo caso 60 h dopo l’irraggiamento, è stato possibile calcolare, utilizzando il programma di elaborazione scritto in MATLAB, il profilo di dose in profondità ottenuto con i RCF e questo è stato confrontato con quello ottenuto con una simulazione eseguita con GEANT4, come mostrato in Figura 5.19.

L’errore mostrato in Figura 5.19 risulta essere del 4,3% ed è stato stimato considerando l’incertezza derivante dalle misure eseguite in fase di calibrazione e le incertezze legate alla procedura di scansione del film.

Successivamente, una volta calcolata l’energia totale depositata su ogni RCF, è stato possibile effettuare, analogamente ai casi precedenti, la sottrazione pesata e calcolare quindi l’energia trasferita. Il risultato è mostrato in Figura 5.20.
Figura 5.20 – Energia trasferita su ogni EBT3 dai protoni considerando solo l’energia rilasciata solo nella regione del picco di Bragg.

L’errore mostrato in Figura 5.20 risulta essere del 10,9% ed è stato stimato considerando l’incertezza sulla misura della dose e sul valore del fattore di correzione. In Figura 5.21 è mostrato lo spettro energetico ottenuto con la procedura precedentemente descritta.

Figura 5.21 – Spettro energetico dei protoni che raggiungono lo stack di RCF EBT3.
L’errore in Figura 5.21 è del 15% ed è dovuto alle incertezze stimate nel caso della Figura 5.20 e a quello derivante dalla statistica di Poisson \(1/\sqrt{N}\) cui è soggetto il risultato delle simulazioni eseguite con SRIM.

Infine, per verificare la validità delle operazioni sin qui eseguite, è stato eseguito un confronto dei dati sperimentali con i dati ottenuti con una simulazione effettuata con GEANT4, nella quale è stato riprodotto fedelmente il cuneo di PMMA usato per le misure.

Come si può notare dalla figura seguente si nota un buon accordo.

![Figura 5.22 – Confronto tra i dati sperimentali ottenuti con i RCF EBT3 (punti rossi) e la simulazione eseguita con GEANT4 (linea continua verde).](image)

Dal confronto dei risultati ottenuti nelle due diverse configurazioni (modulatore e cuneo) si evince che, l’aver introdotto nel caso del cuneo anche una disomogeneità nella distribuzione spaziale dell’energia, diminuisce il livello di accuratezza dello spettro energetico ottenuto. Infatti, come atteso, nel caso del cuneo lo spettro presenta più evidenti fluttuazioni.

Inoltre, dal confronto dei risultati ottenuti utilizzando due tipi di RCF (HD-810 e EBT3), nella medesima configurazione sperimentale, si nota come i RCF HD-810 mostrano una maggiore risoluzione energetica, a discapito, però, di una bassa sensibilità. Questo implica che un loro utilizzo per misure di spettroscopia è preferibile rispetto agli EBT3, se però si opera con elevati valori di dose. Questo, in irraggiamenti di tipo “single shot”, come quelli prodotti dall’interazione laser-target, può rappresentare un limite rispetto agli EBT3, caratterizzati, invece, da una sensibilità più elevata.
CONCLUSIONI

L’obiettivo di questo lavoro di tesi è stato quello di definire un *modus operandi* per quel che concerne la dosimetria e la spettroscopia di un fascio di protoni prodotto in seguito all’interazione laser-target.

Ciò è necessario poiché questi fasci sono caratterizzati da una struttura temporale impulsata, da elevatissimi ratei di dose per impulso (fino a 10^9 Gy/s) e da spread energetici del 100%. Queste peculiarità rendono inutilizzabili i sistemi dosimetrici attualmente impiegati con fasci convenzionali. Quindi è nata l’esigenza di modificare i protocolli dosimetrici vigenti e di ricercare eventuali dosimetri alternativi utilizzabili con questi tipi di fasci. Una possibile alternativa, che è stata trattata in questo lavoro di tesi, è rappresentata dai film radiocromici, le cui caratteristiche sono state ampiamente descritte nel capitolo 3 e che, grazie alla loro indipendenza dal rateo di dose, possono essere utilizzati anche per la dosimetria di fasci prodotti tramite interazione laser-target.

Inoltre, uno degli obiettivi principali del presente lavoro di tesi è stato quello di istituire e testare un protocollo, descritto nel capitolo 5, per quel che concerne la spettroscopia di un fascio di protoni che presenta uno spread energetico ed una distribuzione energetica nello spazio non omogenea.

Una problematica riscontrata, durante le operazioni preliminari di dosimetria descritte nel capitolo 4, è stata quella della dipendenza della risposta dei film radiocromici dal LET delle particelle incidenti che, come descritto nel paragrafo 3.2.6, determina una sottostima della dose letta a partire dall’annerimento del RCF. Questa problematica è stata risolta introducendo un fattore di correzione che è stato utilizzato sia nel capitolo 4, correggendo opportunamente i profili di dose in profondità, sia nel capitolo 5, permettendo di stimare con maggiore accuratezza il numero di protoni che hanno raggiunto lo stack di RCF.

Per effettuare i test sperimentali è stato utilizzato il fascio di protoni monoenergetico accelerato dal ciclotrone superconduttore (CS), di cui si riescono a riprodurre accuratamente, attraverso codici di simulazione Monte Carlo, le condizioni di trasporto. Per simulare al meglio un fascio prodotto tramite laser, il fascio del ciclotrone è stato, con opportune metodologie, modificato in maniera tale da ottenere, a partire da fasci
monoenergetici di protoni, fasci con ampi spread energetici (configurazione con modulatore) e con una distribuzione spaziale dell’energia non omogenea (configurazione del cuneo).

I risultati ottenuti con questo metodo spettroscopico sono stati confrontati con quelli ottenuti utilizzando delle simulazioni Monte Carlo, di cui precedentemente ne è stata verificata la validità.

Nel caso della configurazione in cui è stato utilizzato il cuneo, che è quella che più realisticamente riproduce la distribuzione energetica di un fascio laser-driven, i risultati mostrano, come ci si aspettava, una maggiore fluttuazione rispetto al caso relativo al modulatore. Questo è imputabile al fatto che, aggiungere una dipendenza spaziale, oltre che energetica, incrementa le incertezze dei risultati sperimentali. Le metodologie sviluppate nel presente lavoro, anche se hanno prodotto risultati in buon accordo con le predizioni ottenute attraverso le simulazioni Monte Carlo di riferimento, necessitano di alcune migliorie relative alle procedure di deconvoluzione e agli algoritmi di calcolo degli spettri energetici, che potrebbero in seguito ridurre le incertezze sperimentali.

Nella configurazione in cui è stato adoperato il modulatore sono stati utilizzati due modelli di RCF: gli HD-810 e gli EBT3. I primi hanno permesso di ottenere dei profili di dose che presentano oscillazioni minori e spettri energetici con risoluzioni energetiche migliori dei secondi e ciò li rende preferibili. Il fatto che gli HD-810 richiedano una dose molto più alta rispetto agli EBT3 affinché su di essi si registri annerimento, può rappresentare tuttavia un limite nel caso dei fasci di tipo “single shot” generati in seguito all’interazione laser-target.

Inoltre, il metodo spettroscopico sviluppato potrà essere utilizzato non solo per la caratterizzazione di fasci accelerati per interazione laser-target, ma anche per misure di dosimetria assoluta di tali fasci. Infatti, come visto nel capitolo 5, i RCF assemblati in configurazione stack e accoppiati ad una Faraday cup costituiscono un sistema per misure di dosimetria assoluta che bene si adatta alle caratteristiche temporali dei fasci laser-driven. Tale sistema prevede, appunto, l’utilizzo dei RCF per ottenere informazioni riguardanti la dimensione dello spot del fascio, la distribuzione spaziale di dose e lo spettro energetico. Quest’ultima è un’informazione cruciale al fine di calibrare la Faraday cup [39].

In futuro sono in programma diverse campagne di misura in facility laser al fine di testare tali procedure e di redigere, a partire dagli algoritmi sviluppati nel presente lavoro di tesi, un protocollo per misure di dosimetria relativa e assoluta di fasci di protoni prodotti dall’interazione laser-target.
RINGRAZIAMENTI

Desidero ringraziare vivamente il mio relatore Prof. Luciano Calabretta per avermi seguito nella stesura della tesi e per la cortesia e la disponibilità dimostratami.

Un immenso grazie va a Pablo Cirrone e Francesco Romano per non avermi fatto mai mancare il loro sostegno e per avermi dato la possibilità di imparare moltissimo al loro fianco.

Ringrazio il dott. Luigi Raffaele per avermi messo a disposizione il suo tempo per consigli e spiegazioni e per essere stato sempre disponibile nei miei confronti.

Ringrazio tutti i colleghi del mio gruppo di ricerca dell’INFN senza i quali non sarei riuscito a raggiungere questo traguardo.

Ringrazio mia mamma, mio papà, mio fratello e tutta la mia famiglia, per non avermi mai fatto mancare nulla, per essermi stati sempre vicini e per essermi stati sempre d’esempio.

Un ringraziamento particolare è per Simona perché mi ha “sopportato” e supportato in ogni occasione, aiutandomi a raggiungere questo obiettivo e a superare con serenità e tranquillità anche i momenti più difficili.

Ringrazio Emilio per esserci sempre stato quando avevo bisogno.

Ringrazio Andrea e Jonathan che, anche se lontani, non mi hanno fatto mai mancare il loro appoggio e tutti i colleghi ed amici per avermi fatto passare tante giornate in spensieratezza ed allegria.
BIBLIOGRAFIA

[44] M. J. Butson et al., «Radiochromic film for medical radiation dosimetry,» *Reports,*

ELENCO DELLE FIGURE

FIGURA 1.1 – COMPARAZIONE QUALITATIVA TRA LE CURVE DI DEPTH-DOSE RELATIVE AI RAGGI X ED AD UN FASCIO DI PROTONI MODULATO E NON MODULATO (ENERGIA ARBITRARIA) .. 12
FIGURA 1.2 – IMPULSO E PRE-IMPULO CPA. .. 13
FIGURA 1.3 – SCHEMA DEL MECCANISMO TNSA. L’IMPULO LASER PROVENIENTE DA SINISTRA È FOCALIZZATO NEL LATO ANTERIORE DEL BERSAGLIO, SUL PRE-PLASMA, GENERATO DALL’AMPLIFICAZIONE DELL’EMISSIONE SPONTANEA PRODOTTA DAL LASER (A). L’IMPULO PRINCIPALE INTERAGISCE CON IL PLASMA SULLA SUPERFICIE CRITICA E ACCELER A GLI ELETTRONI ECCITATI NEL MATERIALE BERSAGLIO (b). GLI ELETTRONI SONO TRASPORTATI CON UN CERTO ANGOLO DI DIVERGENZA ATTRAVERSO IL TARGET, FUORIESCONO DAL LATO POSTERIORE E FORMANO UNA GUAINA DENS A DI ELETTRONI. IL FORTE CAMPO ELETTRICO DELL’ORDINE DI TV/M GENERATO DALLA SEPARAZIONE DI CARICA È IN GRADO DI IONIZZARE ATOMI NEL LATO POSTERIORE (c). QUESTI IONI SONO ACCELERATI IN QUALCHE MICRON LUNGO LA DIREZIONE NORMALE AL TARGET. AL TERMINE DEL PROCESSO DI ACCELERAZIONE IL TARGET È DISTRUITO E GLI IONI LASCIANO IL BERSAGLIO IN UNA NUBE QUASI-NEUTRA INSIEME AGLI ELETTRONI (d) [3]. ... 19
FIGURA 1.4 – SCHEMATIZZAZIONE DEL PROCESSO TNSA [6]... 20
FIGURA 1.5 – ESEMPIO DI SPECTRO DI EMISSIONE DI PROTONI ACCELERATI IN REGIME TNSA [2] ... 22
FIGURA 1.6 – SCHEMA ESPANSIONE DEL FASCIO DI PROTONI IN FUNZIONE DELL’ENERGIA. [3] .. 23
FIGURA 2.2 - DESCRIZIONE QUALITATIVA DELLA IONIZZAZIONE SPECIFICA, IN FUNZIONE DELLO SPESSORE ATTRAVERSATO, PER PARTICELLE CARICHE PESANTI. [11] ... 30
FIGURA 2.3 - CURVA INTEGRALE E DIFFERENZIALE DEL PERCORSO DI PARTICELLE CARICHE PESANTI NELLA MATERIA. [11] .. 31
FIGURA 2.4 - PERDITA DI ENERGIA PER IONIZZAZIONE (LINEA PUNTEGGIATA), PER BREMSSTRAHLUNG (LINEA TRATTEGGIATA) E TOTALE (LINEA CONTINUA) NEL TUNGSTENO. .. 32
FIGURA 2.5 – SCHEMA ASSORBIMENTO FOTOELETTRICO.. 34
FIGURA 2.6 – SCHEMA EFFETTO COMPTON ... 34
FIGURA 2.7 – SCHEMA PRODUZIONE DI COPPIE.. 35
FIGURA 2.8 – SCHEMA DEI POSSIBILI DANNI AL DNA. .. 35
FIGURA 2.9 – ES EMPIO DI CURVE DI SOPRAVVIVENZA RELATIVE A RADIAZIONI IONIZZANTI A BASSO E ALTO LET 36
FIGURA 2.10 – ANDAMENTO DELL’RBE IN FUNZIONE DEL L.E.T. .. 37
Elenco delle Figure

Figura 2.13 - Componenti fondamentali di una camera a ionizzazione e corrispondenti caratteristiche corrente-tensione ... 46

Figura 2.14 - Dettaglio della camera a ionizzazione di tipo Markus ... 48

Figura 2.15 - Dettaglio della camera a ionizzazione di tipo Markus Advanced ... 48

Figura 2.16 – Elenco dei fattori necessari al calcolo del \(\mathbf{k}_q, q_0 \) e dei relativi errori dichiarati nel TRS-398 ... 50

Figura 3.1 – Spettro di assorbimento di un RCF che mostra il picco a 675 nm. [26] .. 56

Figura 3.2 – Configurazione di un RCF modello HD-810 .. 57

Figura 3.3 – Configurazione di un RCF modello EBT 3 .. 58

Figura 3.4 – Modello della catena polimerica che si forma per effetto dell’interazione dei monomeri sensibili del film GafCromico (rappresentati a sinistra) con la radiazione, dove R rappresenta i grossi frammenti di molecole有机iche con peso molecolare superiore a 150 Da. [29] 59

Figura 3.5 – Confronto tra la sensibilità relativa del film HD810 e dei LiF TLD, in funzione dell’energia dei fotoni incidenti ... 61

Figura 3.6 – Dipendenza del valore di dose dall’orientazione del film radiocromatico EBT3 mostrata utilizzando lo scanner Epson Expression 1680 PRO .. 66

Figura 3.7 – Risposte dello scanner Epson Expression 1680 PRO in funzione della posizione del film sul piatto dello scanner ... 67

Figura 3.8 – Variazione della densità ottica all’aumentare del tempo intercorso tra irraggiamento e lettura ... 68

Figura 4.1 – Elementi posti in aria nel tratto finale della linea di fascio che ne determinano le caratteristiche terapeutiche e ne assicurano il monitoraggio (Linea di Trattamento, le misure sono tutte espresse in mm) ... 72

Figura 4.2 – Profilo ottenuto con un singolo fogliolo ... 72

Figura 4.3 – Profilo ottenuto da due foglioni (15 mm + 25 mm in Tantalio) in aggiunta lo stopper (7 mm in rame) sul secondo ... 73

Figura 4.4 – Raffigurazione di un modulatore ... 74

Figura 4.5 – Esempio di Spread Out Bragg Peak (SOBP) (Linea rossa) ottenuto in seguito alla sovrapposizione pesata di vari picchi di Bragg (Linee blu) ... 74

Figura 4.6 – Nella (a) è stata identificata con la freccia la regione di ingresso del fascio; nella (b) la freccia indica la regione al centro del SOBP. Questi sono i punti che devono, a seconda del caso, essere posizionati all’isocentro ... 75

Figura 4.7 – Schermata del software di acquisizione profili X e Y (sinistra) e schermata del software di analisi del singolo profilo X o Y (destra) ... 76

Figura 4.8 – Esempio di profilo trasversale del fascio di protoni, ottenuti con il diodo irradia
to all’isocentro ... 78
Figura 4.9 – Esempio di picco di Bragg non modulato acquisito con la camera Markus Advanced inserita in un fantocci riempito di acqua ... 79
Figura 4.10 – Esempio di range residuo e pratico ... 80
Figura 4.11 – Esempio di picco di Bragg modulato acquisito con la camera Markus Advanced inserita in un fantocci riempito di acqua ... 81
Figura 4.12 – Esempio di RCF irraggiato ... 83
Figura 4.13 – Esempio di RCF posizionato all’entrance .. 84
Figura 4.14 – Curva di taratura HD-810 ... 85
Figura 4.15 - Curva di taratura EBT3 (turno sperimetal di ottobre) .. 86
Figura 4.16 - Curva di taratura EBT3 (turno sperimetal di dicembre) 87
Figura 4.17 – Confronto tra le curve di taratura degli EBT3 acquisite nei due turni sperimentiali 87
Figura 4.18 – Confronto picco acquisito con la camera Markus e quello acquisito con gli HD-810 91
Figura 4.19 – Andamento della sottostima di dose nel caso degli HD-810 91
Figura 4.20 – Andamento del fattore di correzione in funzione dell’energia residua per gli HD-810 92
Figura 4.21 - Confronto picco acquisito con la camera Markus e quello acquisito con gli HD-810 dopo aver applicato i fattore di correzione $gQ, Q0$.. 93
Figura 4.22 – Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3 94
Figura 4.23 - Andamento della sottostima di dose nel caso degli EBT3 95
Figura 4.24 – Andamento del fattore di correzione in funzione dell’energia residua per gli EBT3 95
Figura 4.25 - Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3 dopo aver applicato i fattore di correzione $gQ, Q0$.. 96
Figura 4.26 – Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3 97
Figura 4.27 - Andamento della sottostima di dose nel caso degli EBT3 98
Figura 4.28 – Andamento del fattore di correzione in funzione dell’energia residua per gli EBT3 98
Figura 4.29 - Confronto picco acquisito con la camera Markus e quello acquisito con gli EBT3 dopo aver applicato i fattore di correzione $gQ, Q0$.. 99
Figura 4.30 – Confronto tra le curve di $gQ, Q0$ ottenute nei due diversi turni sperimentali con gli EBT3 .. 99
Figura 5.1 – Rappresentazione della linea CATANA simulata con GEANT4 103
Figura 5.2 – Configurazione sperimetal nel caso del modulatore ... 105
Figura 5.3 - Configurazione sperimetal nel caso del cuneo ... 105
Figura 5.4 – Configurazione sperimetal simulata con GEANT4 nel caso del cuneo. 106
Figura 5.5 – Vista frontale e laterale del cuneo realizzato presso i LNS. La freccia blu indica la direzione ed il verso del fascio che incide sul cuneo ... 107
Figura 5.6 – Foto del cuneo .. 107
Figura 5.7 – Andamento delle curve di Bragg all’aumentare dell’energia del fascio incidente 108
Figura 5.8 – Deconvoluzione grafica fattori di peso. Al valore di energia assorbita dal RCF che si trova in corrispondenza del picco di Bragg denominato A bisogna sottrarre i contributi dei picchi più energetici e quindi dei picchi indicati in figura con le lettere B, C, D ed E. Quindi ad esempio per calcolare il fattore di peso del picco B sull’energia depositata nel punto A bisogna calcolare il rapporto tra Edep.B(x)/Edep.B(peak), dove Edep.B(x) è il contributo che il picco B fornisce nel punto A e Edep.B(peak) è il valore della ionizzazione massimo del picco B [2] ... 110

Figura 5.9 – Schermata iniziale del programma per la spettroscopia scritto in ambiente MATLAB ... 111

Figura 5.10 – Curva di calibrazione e fit polinomiale ottenuti con MATLAB .. 112

Figura 5.11 – Confronto tra la dose in profondità misurata con la camera Markus Advanced (linea rossa continua), la dose in profondità calcolata a partire dai RCF HD-810 (punti neri) e la dose in profondità simulata attraverso GEANT4 (punti blu). .. 112

Figura 5.12 – Energia trasferita su ogni HD-810 dal fascio di protoni considerando solo l’energia rilasciata nella regione del picco di Bragg. .. 113

Figura 5.13 – Speettro energetico dei protoni che raggiungono lo stack di RCF HD-810. ... 114

Figura 5.14 – Confronto dello spettro ottenuto sperimentalmente con gli HD-810 (punti rossi) con quello ottenuto tramite simulazione GEANT4 (linea continua blu). .. 115

Figura 5.15 - Confronto tra la dose in profondità misurata con la camera Markus Advanced (linea rossa continua), la dose in profondità calcolata a partire dai RCF EBT3 (punti verdi) e la dose in profondità simulata attraverso GEANT4 (punti blu). .. 116

Figura 5.16 - Energia trasferita su ogni EBT3 dal fascio di protoni considerando solo l’energia rilasciata nella regione del picco di Bragg. .. 117

Figura 5.17 - Speettro energetico dei protoni che raggiungono lo stack di RCF EBT3 ... 117

Figura 5.18 - Confronto dello spettro ottenuto sperimentalmente con gli EBT3 (punti rossi) con quello ottenuto tramite simulazione GEANT4 (linea continua blu). .. 118

Figura 5.19 - Confronto tra la dose in profondità calcolata a partire dai RCF HD-810 (punti rossi) e la dose in profondità simulata attraverso GEANT4 (linea blu continua) .. 119

Figura 5.20 - Energia trasferita su ogni EBT3 dai protoni considerando solo l’energia rilasciata solo nella regione del picco di Bragg. .. 120

Figura 5.21 – Speettro energetico dei protoni che raggiungono lo stack di RCF EBT3 ... 120

Figura 5.22 - Confronto tra i dati sperimentali ottenuti con i RCF EBT3 (punti rossi) e la simulazione eseguita con GEANT4 (linea continua verde). .. 121
ELENCO DELLE TABELLE

TABELLA 2.1 – ESEMPI DI POPOLAZIONI CELLULARI RADIONSENSIBILI E RADIONRESISTENTI .. 36
TABELLA 2.2 – ESEMPI DI PARTICELLE AD ALTO O BASSO LET .. 38
TABELLA 2.3 - L.E.T. DI ALCUNE PARTICELLE USATE IN DOSIMETRIA AL VARIARE DELL’ENERGIA. ... 38
TABELLA 2.4 – VALORI TIPICI PER DIFFERENTI TIPI DI RADIAZIONI. *IL VALORE PIÙ ALTO RICORRE ALLA FINE DEL RANGE
DELLA PARTICELLA DOVE IL LET CRESC. .. 38
TABELLA 3.1 – COMPOSIZIONE ATOMICA PERCENTUALE DEL GAFCHROMIC MODELLO HD-810. [27]................................. 57
TABELLA 3.2 - COMPOSIZIONE ATOMICA PERCENTUALE DEL GAFCHROMIC MODELLO HD-810. .. 58
TABELLA 3.3 - CARATTERISTICHE SCANNER EPSON EXPRESSION PRO 1680 .. 65
TABELLA 3.4 – VARIAZIONE PERCENTUALE IN FUNZIONE DELL’INTERVALLO DI TEMPO TRA IRRAGGIAMENTO E LETTURA
DEL RCF.. 68
TABELLA 4.1 – PARAMETRI OTTENUTI ANALIZZANDO IL FASCIO DI PROTONI NON MODULATO CON IL DIODO 78
TABELLA 4.2 - PARAMETRI OTTENUTI ANALIZZANDO IL FASCIO DI PROTONI MODULATO CON IL DIODO......................... 78
TABELLA 4.3 – DATI OTTENUTI IN SEGUITO ALL’ACQUISIZIONE DEL PICCO DI BRAGG NON MODULATO OTTENUTO CON UN
FASCIO DI PROTONI DA 62 MeV. ... 80
TABELLA 4.4 – DATI OTTENUTI IN SEGUITO ALL’ACQUISIZIONE DEL PICCO DI BRAGG MODULATO OTTENUTO CON UN
FASCIO DI PROTONI DA 62 MeV. ... 81
TABELLA 4.5 – FATTORI DI CONVERSIONE SPESSORE RCF IN SPESSORE EQUIVALENTE IN ACQUA................................. 89
TABELLA 4.6 – CONVERSIONE SPESSORE STRATI RCF IN SPESSORI IN EQUIVALENTE IN ACQUA. 90